Inhibition, Spike Threshold, and Stimulus Selectivity in Primary Visual Cortex

[1]  Maria V. Sanchez-Vives,et al.  Lack of orientation and direction selectivity in a subgroup of fast-spiking inhibitory interneurons: cellular and synaptic mechanisms and comparison with other electrophysiological cell types. , 2008, Cerebral cortex.

[2]  D. Ringach,et al.  The Operating Point of the Cortex: Neurons as Large Deviation Detectors , 2007, The Journal of Neuroscience.

[3]  Nicholas J. Priebe,et al.  The Emergence of Contrast-Invariant Orientation Tuning in Simple Cells of Cat Visual Cortex , 2007, Neuron.

[4]  Matteo Carandini,et al.  Melting the Iceberg: Contrast Invariance in Visual Cortex , 2007, Neuron.

[5]  S. Cruikshank,et al.  Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex , 2007, Nature Neuroscience.

[6]  Elena A Allen,et al.  Dynamic Spatial Processing Originates in Early Visual Pathways , 2006, The Journal of Neuroscience.

[7]  R. Freeman,et al.  Origins of cross-orientation suppression in the visual cortex. , 2006, Journal of neurophysiology.

[8]  Z. Mainen,et al.  Early events in olfactory processing. , 2006, Annual review of neuroscience.

[9]  J. Movshon,et al.  Dynamics of Suppression in Macaque Primary Visual Cortex , 2006, The Journal of Neuroscience.

[10]  Maria V. Sanchez-Vives,et al.  Impact of cortical network activity on short-term synaptic depression. , 2006, Cerebral cortex.

[11]  Nicholas J. Priebe,et al.  Mechanisms underlying cross-orientation suppression in cat visual cortex , 2006, Nature Neuroscience.

[12]  L. Martinez,et al.  Circuits that build visual cortical receptive fields , 2006, Trends in Neurosciences.

[13]  D. Contreras,et al.  Balanced Excitation and Inhibition Determine Spike Timing during Frequency Adaptation , 2006, The Journal of Neuroscience.

[14]  R. Xie,et al.  Differing roles of inhibition in hierarchical processing of species-specific calls in auditory brainstem nuclei. , 2005, Journal of neurophysiology.

[15]  D. Ferster,et al.  Short-Term Depression in Thalamocortical Synapses of Cat Primary Visual Cortex , 2005, The Journal of Neuroscience.

[16]  R. Shapley,et al.  Effect of stimulus size on the dynamics of orientation selectivity in Macaque V1. , 2005, Journal of neurophysiology.

[17]  Eero P. Simoncelli,et al.  Spatiotemporal Elements of Macaque V1 Receptive Fields , 2005, Neuron.

[18]  W. D'Angelo,et al.  Role of GABAergic inhibition in the coding of interaural time differences of low-frequency sounds in the inferior colliculus. , 2005, Journal of neurophysiology.

[19]  James L. McClelland,et al.  Computational and behavioral investigations of lexically induced delays in phoneme recognition , 2005 .

[20]  R. Reid,et al.  Receptive field structure varies with layer in the primary visual cortex , 2005, Nature Neuroscience.

[21]  Nicholas J. Priebe,et al.  Direction Selectivity of Excitation and Inhibition in Simple Cells of the Cat Primary Visual Cortex , 2005, Neuron.

[22]  Nicholas J. Priebe,et al.  The contribution of spike threshold to the dichotomy of cortical simple and complex cells , 2004, Nature Neuroscience.

[23]  David Fitzpatrick,et al.  A morphological basis for orientation tuning in primary visual cortex , 2004, Nature Neuroscience.

[24]  Peter E. Latham,et al.  Computing and Stability in Cortical Networks , 2004, Neural Computation.

[25]  Li I. Zhang,et al.  Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons. , 2004, Journal of neurophysiology.

[26]  Henry J. Alitto,et al.  Influence of contrast on orientation and temporal frequency tuning in ferret primary visual cortex. , 2004, Journal of neurophysiology.

[27]  Robert A. Frazor,et al.  Visual cortex neurons of monkeys and cats: temporal dynamics of the spatial frequency response function. , 2004, Journal of neurophysiology.

[28]  A. Faurion,et al.  Modulation of taste peripheral signal through interpapillar inhibition in hamsters , 2004, Neuroscience Letters.

[29]  H. Ozeki,et al.  Relationship between Excitation and Inhibition Underlying Size Tuning and Contextual Response Modulation in the Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[30]  Jose-Manuel Alonso,et al.  Functionally distinct inhibitory neurons at the first stage of visual cortical processing , 2003, Nature Neuroscience.

[31]  A. Zador,et al.  Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex , 2003, Nature.

[32]  B. Sakmann,et al.  Dynamic Receptive Fields of Reconstructed Pyramidal Cells in Layers 3 and 2 of Rat Somatosensory Barrel Cortex , 2003, The Journal of physiology.

[33]  J. Movshon,et al.  Time Course and Time-Distance Relationships for Surround Suppression in Macaque V1 Neurons , 2003, The Journal of Neuroscience.

[34]  Li I. Zhang,et al.  Topography and synaptic shaping of direction selectivity in primary auditory cortex , 2003, Nature.

[35]  R. Shapley,et al.  Dynamics of orientation tuning in macaque V1: the role of global and tuned suppression. , 2003, Journal of Neurophysiology.

[36]  C. Gray,et al.  Adaptive Coincidence Detection and Dynamic Gain Control in Visual Cortical Neurons In Vivo , 2003, Neuron.

[37]  Harvey A Swadlow,et al.  Thalamocortical control of feed-forward inhibition in awake somatosensory 'barrel' cortex. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[38]  Adam M Sillito,et al.  Corticothalamic interactions in the transfer of visual information. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[39]  M. Carandini,et al.  A Synaptic Explanation of Suppression in Visual Cortex , 2002, The Journal of Neuroscience.

[40]  J. Movshon,et al.  Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[41]  J. Movshon,et al.  Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[42]  J. B. Levitt,et al.  Circuits for Local and Global Signal Integration in Primary Visual Cortex , 2002, The Journal of Neuroscience.

[43]  M. Carandini,et al.  Suppression without Inhibition in Visual Cortex , 2002, Neuron.

[44]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[45]  Jian Wang,et al.  Gamma-aminobutyric acid circuits shape response properties of auditory cortex neurons , 2002, Brain Research.

[46]  R. Shapley,et al.  Orientation Selectivity in Macaque V1: Diversity and Laminar Dependence , 2002, The Journal of Neuroscience.

[47]  D. Hansel,et al.  How Noise Contributes to Contrast Invariance of Orientation Tuning in Cat Visual Cortex , 2002, The Journal of Neuroscience.

[48]  K. Miller,et al.  LGN input to simple cells and contrast-invariant orientation tuning: an analysis. , 2002, Journal of neurophysiology.

[49]  D. Ringach,et al.  On the classification of simple and complex cells , 2002, Vision Research.

[50]  R Clay Reid,et al.  Laminar processing of stimulus orientation in cat visual cortex , 2002, The Journal of physiology.

[51]  D. Ringach,et al.  Dynamics of Spatial Frequency Tuning in Macaque V1 , 2002, The Journal of Neuroscience.

[52]  K. Miller,et al.  Neural noise can explain expansive, power-law nonlinearities in neural response functions. , 2002, Journal of neurophysiology.

[53]  P. H. Schiller,et al.  Spatial frequency and orientation tuning dynamics in area V1 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[54]  D. Ferster,et al.  Dynamics of the orientation-tuned membrane potential response in cat primary visual cortex , 2001, Nature Neuroscience.

[55]  E. Warrington,et al.  Refractory dyslexia: evidence of multiple task-specific phonological output stores. , 2001, Brain : a journal of neurology.

[56]  R. Reid,et al.  Rules of Connectivity between Geniculate Cells and Simple Cells in Cat Primary Visual Cortex , 2001, The Journal of Neuroscience.

[57]  D. Ferster,et al.  Prediction of Orientation Selectivity from Receptive Field Architecture in Simple Cells of Cat Visual Cortex , 2001, Neuron.

[58]  D. Ferster,et al.  Membrane Potential and Conductance Changes Underlying Length Tuning of Cells in Cat Primary Visual Cortex , 2001, The Journal of Neuroscience.

[59]  D. Ferster,et al.  The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. , 2000, Science.

[60]  M. Carandini,et al.  Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. , 2000, Journal of neurophysiology.

[61]  Richard J. Salvi,et al.  GABA-A antagonist causes dramatic expansion of tuning in primary auditory cortex. , 2000, Neuroreport.

[62]  M. Volgushev,et al.  Comparison of the selectivity of postsynaptic potentials and spike responses in cat visual cortex , 2000, The European journal of neuroscience.

[63]  M. Carandini,et al.  Membrane Potential and Firing Rate in Cat Primary Visual Cortex , 2000, The Journal of Neuroscience.

[64]  I. Ohzawa,et al.  Linear and nonlinear contributions to orientation tuning of simple cells in the cat's striate cortex , 1999, Visual Neuroscience.

[65]  D. Simons,et al.  Sensory Loss by Selected Whisker Removal Produces Immediate Disinhibition in the Somatosensory Cortex of Behaving Rats , 1999, The Journal of Neuroscience.

[66]  A. Bruening-Wright,et al.  Bicuculline block of small-conductance calcium-activated potassium channels , 1999, Pflügers Archiv.

[67]  B. Connors,et al.  Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. , 1999, Journal of neurophysiology.

[68]  V. Bringuier,et al.  Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. , 1999, Science.

[69]  S. Nelson,et al.  Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. , 1998, Journal of neurophysiology.

[70]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[71]  J. Alonso,et al.  Functional connectivity between simple cells and complex cells in cat striate cortex , 1998, Nature Neuroscience.

[72]  Haim Sompolinsky,et al.  Chaotic Balanced State in a Model of Cortical Circuits , 1998, Neural Computation.

[73]  D. Ferster,et al.  Strength and Orientation Tuning of the Thalamic Input to Simple Cells Revealed by Electrically Evoked Cortical Suppression , 1998, Neuron.

[74]  U. Eysel,et al.  Evidence for a contribution of lateral inhibition to orientation tuning and direction selectivity in cat visual cortex: reversible inactivation of functionally characterized sites combined with neuroanatomical tracing techniques , 1998, The European journal of neuroscience.

[75]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[76]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[77]  M. Sirota,et al.  Sharp, local synchrony among putative feed-forward inhibitory interneurons of rabbit somatosensory cortex. , 1998, Journal of neurophysiology.

[78]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[79]  R. Shapley,et al.  New perspectives on the mechanisms for orientation selectivity , 1997, Current Opinion in Neurobiology.

[80]  B. McNaughton,et al.  Paradoxical Effects of External Modulation of Inhibitory Interneurons , 1997, The Journal of Neuroscience.

[81]  P. Monsivais,et al.  Processing of interaural intensity differences in the LSO: role of interaural threshold differences. , 1997, Journal of neurophysiology.

[82]  R. Shapley,et al.  Dynamics of orientation tuning in macaque primary visual cortex , 1997, Nature.

[83]  J. B. Levitt,et al.  Contrast dependence of contextual effects in primate visual cortex , 1997, nature.

[84]  N Suga,et al.  Sharpening of frequency tuning by inhibition in the thalamic auditory nucleus of the mustached bat. , 1997, Journal of neurophysiology.

[85]  D. Heeger,et al.  Comparison of contrast-normalization and threshold models of the responses of simple cells in cat striate cortex , 1997, Visual Neuroscience.

[86]  C. Schreiner,et al.  Time course of forward masking tuning curves in cat primary auditory cortex. , 1997, Journal of neurophysiology.

[87]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[88]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[89]  Haim Sompolinsky,et al.  Chaos and synchrony in a model of a hypercolumn in visual cortex , 1996, Journal of Computational Neuroscience.

[90]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[91]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[92]  Michael B. Calford,et al.  Monaural inhibition in cat auditory cortex. , 1995, Journal of neurophysiology.

[93]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[94]  C. Li,et al.  Extensive integration field beyond the classical receptive field of cat's striate cortical neurons--classification and tuning properties. , 1994, Vision research.

[95]  S. Nelson,et al.  Orientation selectivity of cortical neurons during intracellular blockade of inhibition. , 1994, Science.

[96]  D. Ferster,et al.  Linearity of summation of synaptic potentials underlying direction selectivity in simple cells of the cat visual cortex. , 1993, Science.

[97]  D. Heeger Modeling simple-cell direction selectivity with normalized, half-squared, linear operators. , 1993, Journal of neurophysiology.

[98]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. I. General characteristics and postnatal development. , 1993, Journal of neurophysiology.

[99]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial summation. , 1993, Journal of neurophysiology.

[100]  A. M. Sillito,et al.  Orientation sensitive elements in the corticofugal influence on centre-surround interactions in the dorsal lateral geniculate nucleus , 1993, Experimental Brain Research.

[101]  G D Pollak,et al.  GABAergic circuits sharpen tuning curves and modify response properties in the mustache bat inferior colliculus. , 1992, Journal of neurophysiology.

[102]  A. L. Humphrey,et al.  Evidence of input from lagged cells in the lateral geniculate nucleus to simple cells in cortical area 17 of the cat. , 1992, Journal of neurophysiology.

[103]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[104]  F. Wörgötter,et al.  Topographical Aspects of Intracortical Excitation and Inhibition Contributing to Orientation Specificity in Area 17 of the Cat Visual Cortex , 1991, The European journal of neuroscience.

[105]  D. G. Albrecht,et al.  Motion selectivity and the contrast-response function of simple cells in the visual cortex , 1991, Visual Neuroscience.

[106]  R. Shapley,et al.  Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex. , 1991, Journal of neurophysiology.

[107]  D. Whitteridge,et al.  An intracellular analysis of the visual responses of neurones in cat visual cortex. , 1991, The Journal of physiology.

[108]  R. Douglas,et al.  A functional microcircuit for cat visual cortex. , 1991, The Journal of physiology.

[109]  N Suga,et al.  Combination-sensitive neurons in the medial geniculate body of the mustached bat: encoding of relative velocity information. , 1991, Journal of neurophysiology.

[110]  D. Tolhurst,et al.  Evaluation of a linear model of directional selectivity in simple cells of the cat's striate cortex , 1991, Visual Neuroscience.

[111]  M. Stryker,et al.  Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[112]  I. Fujita,et al.  The role of GABAergic inhibition in processing of interaural time difference in the owl's auditory system , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[113]  H Sompolinsky,et al.  Global processing of visual stimuli in a neural network of coupled oscillators. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[114]  D. Ferster Spatially opponent excitation and inhibition in simple cells of the cat visual cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[115]  R. Shapley,et al.  Linear mechanisms of directional selectivity in simple cells of cat striate cortex. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[116]  J. P. Jones,et al.  The two-dimensional spatial structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[117]  I. Ohzawa,et al.  The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior. , 1987, Journal of neurophysiology.

[118]  D. Ferster Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[119]  P. Heggelund Quantitative studies of enhancement and suppression zones in the receptive field of simple cells in cat striate cortex. , 1986, The Journal of physiology.

[120]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[121]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[122]  D. Ferster,et al.  An intracellular analysis of geniculo‐cortical connectivity in area 17 of the cat. , 1983, The Journal of physiology.

[123]  K. Tanaka Cross-correlation analysis of geniculostriate neuronal relationships in cats. , 1983, Journal of neurophysiology.

[124]  A. Ahumada,et al.  A look at motion in the frequency domain , 1983 .

[125]  L. Palmer,et al.  Receptive-field structure in cat striate cortex. , 1981, Journal of neurophysiology.

[126]  D. Ferster A comparison of binocular depth mechanisms in areas 17 and 18 of the cat visual cortex , 1981, The Journal of physiology.

[127]  A. Sillito,et al.  A re-evaluation of the mechanisms underlying simple cell orientation selectivity , 1980, Brain Research.

[128]  J. Movshon,et al.  Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. , 1978, The Journal of physiology.

[129]  T. Poggio,et al.  A synaptic mechanism possibly underlying directional selectivity to motion , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[130]  Otto D. Creutzfeldt,et al.  Generality of the functional structure of the neocortex , 1977, Naturwissenschaften.

[131]  A. Sillito The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. , 1975, The Journal of physiology.

[132]  C. Blakemore,et al.  Effects of bicuculline on functions of inhibition in visual cortex , 1974, Nature.

[133]  P. O. Bishop,et al.  Receptive fields of simple cells in the cat striate cortex , 1973, The Journal of physiology.

[134]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[135]  F. Campbell,et al.  Orientational selectivity of the human visual system , 1966, The Journal of physiology.

[136]  A Look at Motion in the Frequency Domain , 2010 .

[137]  Chun-I Yeh,et al.  On and off domains of geniculate afferents in cat primary visual cortex , 2008, Nature Neuroscience.

[138]  M. C. Morrone,et al.  Cross-orientation inhibition in cat is GABA mediated , 2004, Experimental Brain Research.

[139]  C. Blakemore,et al.  Lateral inhibition between orientation detectors in the cat's visual cortex , 2004, Experimental Brain Research.

[140]  U. Eysel,et al.  GABA-induced remote inactivation reveals cross-orientation inhibition in the cat striate cortex , 2004, Experimental Brain Research.

[141]  R. Freeman,et al.  Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast , 2004, Experimental Brain Research.

[142]  H. Swadlow Fast-spike interneurons and feedforward inhibition in awake sensory neocortex. , 2003, Cerebral cortex.

[143]  BsnNr C. Srorn,et al.  CLASSIFYING SIMPLE AND COMPLEX CELLS ON THE BASIS OF RESPONSE MODULATION , 2002 .

[144]  I. Ohzawa,et al.  Binocular cross-orientation suppression in the cat's striate cortex. , 1998, Journal of neurophysiology.

[145]  I. Ohzawa,et al.  Length and width tuning of neurons in the cat's primary visual cortex. , 1994, Journal of neurophysiology.

[146]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[147]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.