Optimizations for sampling-based motion planning algorithms

Sampling-basedalgorithms solve the motion planning problem by successively solving several separate suproblems of reduced complexity. As a result, the efficiency of the sampling-based algorithm depends on the complexity of each of the algorithms used to solve the individual subproblems, namely the procedures GenerateSample, FindNearest, LocalPlan, CollisionFree, and AddToGraph. However, it is often the case that these subproblems are quite related, working on common components of the problem definition. Therefore, distinct algorithms and segregated data structures for solving these subproblems might be costing sampling-based algorithms more time than necessary. The thesis of this dissertation is the following: By taking advantage of the fact that these subproblems are solved repeatedly with similar inputs, and the relationships between data structures used to solve the subproblems, we may significantly reduce the practical complexity of sampling-based motion planning algorithms. Moreover, this reuse of information from components can be used to find a middle ground between exact motion planning algorithms which find an explicit representation ofthe collision-free space,and sampling-based algorithms which find no representation of the collision-free space, except for the zeromeasure paths between connected nodes in the roadmap. Thesis Supervisor: Prof. Emilio Frazzoli Title: Professor of Aeronautics and Astronautics

[1]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[2]  Faouzi Ghorbel,et al.  A simple and efficient approach for 3D mesh approximate convex decomposition , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[3]  Jon Louis Bentley,et al.  Multidimensional divide-and-conquer , 1980, CACM.

[4]  Nancy M. Amato,et al.  Approximate convex decomposition of polyhedra , 2004, Symposium on Solid and Physical Modeling.

[5]  Alade O. Tokuta Motion planning using binary space partitioning , 1991, Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91.

[6]  Kazuo Murota,et al.  IMPROVEMENTS OF THE INCREMENTAL METHOD FOR THE VORONOI DIAGRAM WITH COMPUTATIONAL COMPARISON OF VARIOUS ALGORITHMS , 1984 .

[7]  Carme Torras,et al.  3D collision detection: a survey , 2001, Comput. Graph..

[8]  Hanan Samet,et al.  Foundations of multidimensional and metric data structures , 2006, Morgan Kaufmann series in data management systems.

[9]  By W. R. GILKSt,et al.  Adaptive Rejection Sampling for Gibbs Sampling , 2010 .

[10]  Manuel Blum,et al.  A Simple Unpredictable Pseudo-Random Number Generator , 1986, SIAM J. Comput..

[11]  Dinesh Manocha,et al.  Fast continuous collision detection for articulated models , 2004, SM '04.

[12]  Jeffrey Scott Vitter,et al.  Bkd-Tree: A Dznamic Scalable kd-Tree , 2003, SSTD.

[13]  Dinesh Manocha,et al.  Quick-CULLIDE: fast inter- and intra-object collision culling using graphics hardware , 2005, IEEE Proceedings. VR 2005. Virtual Reality, 2005..

[14]  Martin Held,et al.  VRONI: An engineering approach to the reliable and efficient computation of Voronoi diagrams of points and line segments , 2001, Comput. Geom..

[15]  Robert E. Tarjan,et al.  Planar point location using persistent search trees , 1986, CACM.

[16]  El-Ghazali Talbi,et al.  The "Ariadne's clew" algorithm: global planning with local methods , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[17]  Mark H. Overmars,et al.  The Gaussian sampling strategy for probabilistic roadmap planners , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[18]  Rephael Wenger Randomized quickhull , 2006, Algorithmica.

[19]  Khaled Benkrid,et al.  Mersenne Twister Random Number Generation on FPGA, CPU and GPU , 2009, 2009 NASA/ESA Conference on Adaptive Hardware and Systems.

[20]  Cyrus Shahabi,et al.  VoR-tree , 2010, Proc. VLDB Endow..

[21]  Dinesh Manocha,et al.  Fast BVH Construction on GPUs , 2009, Comput. Graph. Forum.

[22]  Nancy M. Amato,et al.  MAPRM: a probabilistic roadmap planner with sampling on the medial axis of the free space , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[23]  Dinesh Manocha,et al.  FCL: A general purpose library for collision and proximity queries , 2012, 2012 IEEE International Conference on Robotics and Automation.

[24]  Steven M. LaValle,et al.  Improving Motion-Planning Algorithms by Efficient Nearest-Neighbor Searching , 2007, IEEE Transactions on Robotics.

[25]  Steven M. LaValle,et al.  Rapidly-Exploring Random Trees: Progress and Prospects , 2000 .

[26]  Joseph Culberson,et al.  Sokoban is PSPACE-complete , 1997 .

[27]  Philippe Souères,et al.  Optimal trajectories for nonholonomic mobile robots , 1998 .

[28]  Jarek Rossignac,et al.  Collision prediction for polyhedra under screw motions , 2003, SM '03.

[29]  P. Stein A Note on the Volume of a Simplex , 1966 .

[30]  Rex A. Dwyer Higher-dimensional voronoi diagrams in linear expected time , 1989, SCG '89.

[31]  David G. Kirkpatrick,et al.  A compact piecewise-linear voronoi diagram for convex sites in the plane , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[32]  D. Rubin The Bayesian Bootstrap , 1981 .

[33]  Dinesh Manocha,et al.  Fast GPU-based locality sensitive hashing for k-nearest neighbor computation , 2011, GIS.

[34]  Franziska Hoffmann,et al.  Spatial Tessellations Concepts And Applications Of Voronoi Diagrams , 2016 .

[35]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[36]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[37]  Thierry Siméon,et al.  Visibility-based probabilistic roadmaps for motion planning , 2000, Adv. Robotics.

[38]  Nicole Immorlica,et al.  Locality-sensitive hashing scheme based on p-stable distributions , 2004, SCG '04.

[39]  Raimund Seidel,et al.  Linear programming and convex hulls made easy , 1990, SCG '90.

[40]  山田 祐,et al.  Open Dynamics Engine を用いたスノーボードロボットシミュレータの開発 , 2007 .

[41]  Dinesh Manocha,et al.  Memory-Scalable GPU Spatial Hierarchy Construction , 2011, IEEE Transactions on Visualization and Computer Graphics.

[42]  Olivier Devillers,et al.  The Delaunay Hierarchy , 2002, Int. J. Found. Comput. Sci..

[43]  Thierry Siméon,et al.  A path planning approach for computing large-amplitude motions of flexible molecules , 2005, ISMB.

[44]  Piotr Indyk,et al.  Similarity Search in High Dimensions via Hashing , 1999, VLDB.

[45]  F. P. Preparata,et al.  Convex hulls of finite sets of points in two and three dimensions , 1977, CACM.

[46]  Dinesh Manocha,et al.  Efficient nearest-neighbor computation for GPU-based motion planning , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[47]  E. J.,et al.  ON THE COMPLEXITY OF MOTION PLANNING FOR MULTIPLE INDEPENDENT OBJECTS ; PSPACE HARDNESS OF THE " WAREHOUSEMAN ' S PROBLEM " . * * ) , 2022 .

[48]  Stephen M. Omohundro,et al.  Five Balltree Construction Algorithms , 2009 .

[49]  Raimund Seidel,et al.  Constructing higher-dimensional convex hulls at logarithmic cost per face , 1986, STOC '86.

[50]  Bernhard Glavina,et al.  Solving findpath by combination of goal-directed and randomized search , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[51]  Kevin Q. Brown,et al.  Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..

[52]  G. Marsaglia,et al.  A New Class of Random Number Generators , 1991 .

[53]  Pierre L'Ecuyer,et al.  Tables of linear congruential generators of different sizes and good lattice structure , 1999, Math. Comput..

[54]  Ming C. Lin,et al.  Efficient collision detection for animation and robotics , 1993 .

[55]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[56]  Jean-Claude Latombe,et al.  On Delaying Collision Checking in PRM Planning: Application to Multi-Robot Coordination , 2002, Int. J. Robotics Res..

[57]  Lydia E. Kavraki,et al.  On finding narrow passages with probabilistic roadmap planners , 1998 .

[58]  Dinesh Manocha,et al.  MCCD: Multi-core collision detection between deformable models using front-based decomposition , 2010, Graph. Model..

[59]  Rex A. Dwyer,et al.  The Expected Number of k-Faces of a Voronoi Diagram , 1993 .

[60]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[61]  Kurt Mehlhorn,et al.  Randomized Incremental Construction of Abstract Voronoi Diagrams , 1993, Comput. Geom..

[62]  Abderrahmane Kheddar,et al.  Fast Continuous Collision Detection between Rigid Bodies , 2002, Comput. Graph. Forum.

[63]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[64]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[65]  Mitul Saha,et al.  Exact Collision Checking of Robot Paths , 2002, WAFR.

[66]  P. McAree,et al.  Using Sturm sequences to bracket real roots of polynomial equations , 1990 .

[67]  Jirí Zára,et al.  Fast Collision Detection for Skeletally Deformable Models , 2005, Comput. Graph. Forum.

[68]  Dinesh Manocha,et al.  GPU-Based Parallel Collision Detection for Real-Time Motion Planning , 2010, WAFR.

[69]  Abderrahmane Kheddar,et al.  An algebraic solution to the problem of collision detection for rigid polyhedral objects , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[70]  John F. Canny,et al.  Collision Detection for Moving Polyhedra , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[71]  Lydia E. Kavraki,et al.  Guided Expansive Spaces Trees: a search strategy for motion- and cost-constrained state spaces , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[72]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[73]  Daniel Vallejo,et al.  OBPRM: an obstacle-based PRM for 3D workspaces , 1998 .

[74]  Alexandr Andoni,et al.  Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[75]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[76]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[77]  Bettina Speckmann,et al.  Kinetic collision detection for simple polygons , 2000, SCG '00.

[78]  David B. Lomet,et al.  The hB-tree: a multiattribute indexing method with good guaranteed performance , 1990, TODS.

[79]  Jon Louis Bentley,et al.  An Algorithm for Finding Best Matches in Logarithmic Expected Time , 1977, TOMS.

[80]  Rajeev Motwani,et al.  Path planning in expansive configuration spaces , 1997, Proceedings of International Conference on Robotics and Automation.

[81]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[82]  S. Sathiya Keerthi,et al.  A fast procedure for computing the distance between complex objects in three-dimensional space , 1988, IEEE J. Robotics Autom..

[83]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[84]  Dinesh Manocha,et al.  gProximity: Hierarchical GPU‐based Operations for Collision and Distance Queries , 2010, Comput. Graph. Forum.

[85]  Mariette Yvinec,et al.  The Voronoi Diagram of Planar Convex Objects , 2003, ESA.

[86]  Jean-Claude Latombe,et al.  Robot Motion Planning: A Distributed Representation Approach , 1991, Int. J. Robotics Res..

[87]  David Hsu,et al.  The bridge test for sampling narrow passages with probabilistic roadmap planners , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[88]  Kurt Mehlhorn,et al.  Four Results on Randomized Incremental Constructions , 1992, Comput. Geom..

[89]  A. Guttmma,et al.  R-trees: a dynamic index structure for spatial searching , 1984 .

[90]  Dinesh Manocha,et al.  GPU-based parallel collision detection for fast motion planning , 2012, Int. J. Robotics Res..

[91]  Yu-Chi Chang,et al.  Finding Narrow Passages with Probabilistic Roadmaps: The Small-Step Retraction Method , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[92]  Mark H. Overmars,et al.  A Comparative Study of Probabilistic Roadmap Planners , 2002, WAFR.

[93]  J. Schwartz,et al.  On the Complexity of Motion Planning for Multiple Independent Objects; PSPACE- Hardness of the "Warehouseman's Problem" , 1984 .

[94]  Jeff M. Phillips,et al.  Spacecraft Rendezvous and Docking with Real-Time, Randomized Optimization , 2003 .

[95]  Dinesh Manocha,et al.  Fast and reliable collision culling using graphics hardware , 2005, SIGGRAPH Courses.

[96]  Nancy M. Amato,et al.  Using motion planning to study protein folding pathways , 2001, J. Comput. Biol..

[97]  J. T. Robinson,et al.  The K-D-B-tree: a search structure for large multidimensional dynamic indexes , 1981, SIGMOD '81.

[98]  Steven M. LaValle,et al.  Current Issues in Sampling-Based Motion Planning , 2005, ISRR.

[99]  John H. Reif,et al.  Complexity of the mover's problem and generalizations , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).