Parameter convergence via a novel PI-like composite adaptive controller for uncertain Euler-Lagrange systems

This work proposes a novel PI-like composite adaptive control architecture for the uncertain Euler-Lagrange (EL) systems. The composite adaptive law is strategically designed to be proportional to the parameter estimation error in addition to the tracking error, leading to parameter convergence. Unlike conventional adaptive control laws which require the regressor function to be persistently exciting (PE) for parameter convergence, the proposed method guarantees parameter convergence from a milder initially exciting (IE) condition on the regressor. The IE condition is significantly less restrictive than PE, since it does not rely on the future values of the signal and that it can be verified online. Further, the design methodology does not assume the knowledge of acceleration in the adaptive update law development. As far as the authors are aware, this is the first work on EL dynamics that achieves exponential convergence of the tracking and the parameter estimation errors to zero once the sufficient IE condition is met.

[1]  J. Slotine,et al.  An indirect adaptive robot controller , 1989 .

[2]  Jun Nakanishi,et al.  Composite adaptive control with locally weighted statistical learning , 2005, Neural Networks.

[3]  Gang Tao,et al.  Adaptive Control Design and Analysis , 2003 .

[4]  Weiping Li,et al.  Composite adaptive control of robot manipulators , 1989, Autom..

[5]  Marcus Johnson,et al.  Composite adaptive control for Euler-Lagrange systems with additive disturbances , 2010, Autom..

[6]  Mark W. Spong,et al.  Adaptive motion control of rigid robots: a tutorial , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[7]  Eugene Lavretsky,et al.  Combined/Composite Model Reference Adaptive Control , 2009, IEEE Transactions on Automatic Control.

[8]  Martin Guay,et al.  Finite-time Parameter Estimation in Adaptive Control of Nonlinear Systems , 2008, 2007 American Control Conference.

[9]  I. Kanellakopoulos,et al.  Nonlinearities enhance parameter convergence in output-feedback systems , 1998, IEEE Trans. Autom. Control..

[10]  Girish Chowdhary,et al.  Concurrent learning adaptive control of linear systems with exponentially convergent bounds , 2013 .

[11]  Jung-Shan Lin,et al.  Nonlinearities enhance parameter convergence in strict feedback systems , 1999, IEEE Trans. Autom. Control..

[12]  Graham C. Goodwin,et al.  Adaptive computed torque control for rigid link manipulators , 1986, 1986 25th IEEE Conference on Decision and Control.

[13]  Frank L. Lewis,et al.  Robot Manipulator Control: Theory and Practice , 2003 .

[14]  J. Slotine,et al.  On the Adaptive Control of Robot Manipulators , 1987 .

[15]  Warren E. Dixon,et al.  Model-based reinforcement learning for approximate optimal regulation , 2016, Autom..

[16]  Warren E. Dixon,et al.  Composite adaptation for neural network-based controllers , 2010, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[17]  M. Guay,et al.  Excitation Signal Design for Parameter Convergence in Adaptive Control of Linearizable Systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[18]  Víctor Santibáñez,et al.  A generalized global adaptive tracking control scheme for robot manipulators with bounded inputs , 2015 .

[19]  Girish Chowdhary,et al.  Concurrent learning for convergence in adaptive control without persistency of excitation , 2010, 49th IEEE Conference on Decision and Control (CDC).

[20]  Luigi Fortuna,et al.  Reinforcement Learning and Adaptive Dynamic Programming for Feedback Control , 2009 .

[21]  Sastry,et al.  Necessary and sufficient conditions for parameter convergence in adaptive control , 1984 .

[22]  Jean-Jacques E. Slotine,et al.  Adaptive manipulator control: A case study , 1988 .

[23]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[24]  Antonio Loría,et al.  Closed-loop identification and tracking control of Lagrangian systems under input constraints , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[25]  Indra Narayan Kar,et al.  Memory-Based Data-Driven MRAC Architecture Ensuring Parameter Convergence , 2016, ArXiv.