Color contrast in macaque V1.

We explored the neural basis for spatial color contrast (red looks redder surrounded by green) and temporal color contrast (red looks redder if preceded by green) in primary visual cortex (V1) of the alert macaque. Using pairs of stimuli, we found a subset of neurons that gave stronger responses to sequences of red and green spots and stronger responses to adjacent red and green spots. These cells combined their cone inputs linearly: for a red-ON-center cell, the sum of the OFF response to green and the ON response to red predicted the peak response to red preceded by green. These 'color' cells, which could underlie hue discrimination because they show cone opponency, could mediate spatial and temporal color contrast. In contrast, the majority of cortical cells, which do not show overt cone opponency but which are often orientation tuned and/or direction selective, are by themselves incapable of mediating hue discrimination. The remarkable degree of specialization shown by cells in V1, especially that of the double-opponent color cells, is discussed.

[1]  J. M. Rubin,et al.  Color vision and image intensities: When are changes material? , 1982, Biological Cybernetics.

[2]  D. Tolhurst,et al.  The effects of contrast on the linearity of spatial summation of simple cells in the cat's striate cortex , 2004, Experimental Brain Research.

[3]  Michael Shelley,et al.  How Simple Cells Are Made in a Nonlinear Network Model of the Visual Cortex , 2001, The Journal of Neuroscience.

[4]  C. Furmanski,et al.  Selective Adaptation to Color Contrast in Human Primary Visual Cortex , 2001, The Journal of Neuroscience.

[5]  Bevil R. Conway,et al.  Spatial Structure of Cone Inputs to Color Cells in Alert Macaque Primary Visual Cortex (V-1) , 2001, The Journal of Neuroscience.

[6]  R. Shapley,et al.  The spatial transformation of color in the primary visual cortex of the macaque monkey , 2001, Nature Neuroscience.

[7]  K. Gegenfurtner Color in the cortex revisited , 2001, Nature Neuroscience.

[8]  T. W. Lee,et al.  Chromatic structure of natural scenes. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[9]  L. Finkel,et al.  Color-opponent receptive fields derived from independent component analysis of natural images , 2000, Vision Research.

[10]  Lindsay T Sharpe,et al.  Tritanopic color matches and the middle- and long-wavelength-sensitive cone spectral sensitivities , 2000, Vision Research.

[11]  R. L. Valois,et al.  Some transformations of color information from lateral geniculate nucleus to striate cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[12]  S. Zeki,et al.  The neurological basis of conscious color perception in a blind patient. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[13]  D. Baylor,et al.  Receptive-field microstructure of blue-yellow ganglion cells in primate retina , 1999, Nature Neuroscience.

[14]  Doris Y. Tsao,et al.  Receptive fields of disparity-selective neurons in macaque striate cortex , 1999, Nature Neuroscience.

[15]  David Williams,et al.  The arrangement of the three cone classes in the living human eye , 1999, Nature.

[16]  Karl R. Gegenfurtner,et al.  Color Vision: From Genes to Perception , 1999 .

[17]  R. L. Valois,et al.  Temporal dynamics of chromatic tuning in macaque primary visual cortex , 1998, Nature.

[18]  M. Livingstone,et al.  Neuronal correlates of visibility and invisibility in the primate visual system , 1998, Nature Neuroscience.

[19]  M. Livingstone,et al.  Mechanisms of Direction Selectivity in Macaque V1 , 1998, Neuron.

[20]  D H Hubel,et al.  Visual responses in V1 of freely viewing monkeys. , 1996, Cold Spring Harbor symposia on quantitative biology.

[21]  A. Leventhal,et al.  Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  B. Wandell Foundations of vision , 1995 .

[23]  Richard E. Kronauer,et al.  Temporal properties of the red-green chromatic mechanism , 1994, Vision Research.

[24]  D. Ferster Linearity of synaptic interactions in the assembly of receptive fields in cat visual cortex , 1994, Current Opinion in Neurobiology.

[25]  Barry B. Lee,et al.  The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type , 1994, Nature.

[26]  R. Shapley,et al.  Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus , 1992, Nature.

[27]  D C Van Essen,et al.  Information processing in the primate visual system: an integrated systems perspective. , 1992, Science.

[28]  DH Hubel,et al.  Color and contrast sensitivity in the lateral geniculate body and primary visual cortex of the macaque monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  P. Lennie,et al.  Chromatic mechanisms in striate cortex of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  D. Ts'o,et al.  The organization of chromatic and spatial interactions in the primate striate cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  Tomaso Poggio,et al.  Synthesizing a color algorithm from examples , 1988 .

[32]  DH Hubel,et al.  Psychophysical evidence for separate channels for the perception of form, color, movement, and depth , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  D. Baylor,et al.  Spectral sensitivity of cones of the monkey Macaca fascicularis. , 1987, The Journal of physiology.

[34]  K. Mullen The contrast sensitivity of human colour vision to red‐green and blue‐yellow chromatic gratings. , 1985, The Journal of physiology.

[35]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[36]  D. G. Albrecht,et al.  Spatial mapping of monkey VI cells with pure color and luminance stimuli , 1984, Vision Research.

[37]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  H. Spekreijse,et al.  The “silent substitution” method in visual research , 1982, Vision Research.

[39]  Leo Maurice Hurvich,et al.  Color vision , 1981 .

[40]  C. Gross,et al.  Color categories in macaques. , 1979, Journal of comparative and physiological psychology.

[41]  P. Gouras,et al.  Responses of cells in foveal visual cortex of the monkey to pure color contrast. , 1979, Journal of neurophysiology.

[42]  C. R. Michael Color vision mechanisms in monkey striate cortex: simple cells with dual opponent-color receptive fields. , 1978, Journal of neurophysiology.

[43]  C. R. Michael Color vision mechanisms in monkey striate cortex: dual-opponent cells with concentric receptive fields. , 1978, Journal of neurophysiology.

[44]  G. Poggio,et al.  Spatial and chromatic properties of neurons subserving foveal and parafoveal vision in rhesus monkey , 1975, Brain Research.

[45]  J. Pokorny,et al.  Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm , 1975, Vision Research.

[46]  R. L. Valois,et al.  Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests. , 1974, Vision research.

[47]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[48]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[49]  N. Daw,et al.  Goldfish Retina: Organization for Simultaneous Color Contrast , 1967, Science.

[50]  D. Hubel,et al.  Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. , 1966, Journal of neurophysiology.

[51]  J. Albers,et al.  Interaction of Color , 1971 .

[52]  K. Motokawa,et al.  Spectral responses of single units in the primate visual cortex. , 1962, The Tohoku journal of experimental medicine.

[53]  W. Rushton,et al.  Retinal stimulation by light substitution , 1959, The Journal of physiology.

[54]  D. Hubel Tungsten Microelectrode for Recording from Single Units. , 1957, Science.