The contribution of spike threshold to the dichotomy of cortical simple and complex cells

[1]  D. Ringach,et al.  Spatial overlap of ON and OFF subregions and its relation to response modulation ratio in macaque primary visual cortex. , 2005, Journal of neurophysiology.

[2]  R. Shapley,et al.  An egalitarian network model for the emergence of simple and complex cells in visual cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Bevil R. Conway,et al.  Space-time maps and two-bar interactions of different classes of direction-selective cells in macaque V-1. , 2003, Journal of neurophysiology.

[4]  D. Snodderly,et al.  Spatial organization of receptive fields of V1 neurons of alert monkeys: comparison with responses to gratings. , 2002, Journal of neurophysiology.

[5]  D. Hansel,et al.  How Noise Contributes to Contrast Invariance of Orientation Tuning in Cat Visual Cortex , 2002, The Journal of Neuroscience.

[6]  Luis M Martinez,et al.  Synaptic physiology of the flow of information in the cat's visual cortex in vivo , 2002, The Journal of physiology.

[7]  D. Ringach,et al.  On the classification of simple and complex cells , 2002, Vision Research.

[8]  K. Miller,et al.  Neural noise can explain expansive, power-law nonlinearities in neural response functions. , 2002, Journal of neurophysiology.

[9]  J. Alonso,et al.  Construction of Complex Receptive Fields in Cat Primary Visual Cortex , 2001, Neuron.

[10]  R. Reid,et al.  Rules of Connectivity between Geniculate Cells and Simple Cells in Cat Primary Visual Cortex , 2001, The Journal of Neuroscience.

[11]  D. Ferster,et al.  Prediction of Orientation Selectivity from Receptive Field Architecture in Simple Cells of Cat Visual Cortex , 2001, Neuron.

[12]  D. Ferster,et al.  The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. , 2000, Science.

[13]  C. Gray,et al.  Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  M. Carandini,et al.  Membrane Potential and Firing Rate in Cat Primary Visual Cortex , 2000, The Journal of Neuroscience.

[15]  Frances S. Chance,et al.  Complex cells as cortically amplified simple cells , 1999, Nature Neuroscience.

[16]  V. Bringuier,et al.  Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. , 1999, Science.

[17]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[18]  J. Alonso,et al.  Functional connectivity between simple cells and complex cells in cat striate cortex , 1998, Nature Neuroscience.

[19]  D. Ferster,et al.  Strength and Orientation Tuning of the Thalamic Input to Simple Cells Revealed by Electrically Evoked Cortical Suppression , 1998, Neuron.

[20]  D. Ferster,et al.  Direction selectivity of synaptic potentials in simple cells of the cat visual cortex. , 1997, Journal of neurophysiology.

[21]  J. Movshon,et al.  Spike train encoding by regular-spiking cells of the visual cortex. , 1996, Journal of neurophysiology.

[22]  Trichur Raman Vidyasagar,et al.  A linear model fails to predict orientation selectivity of cells in the cat visual cortex. , 1996, The Journal of physiology.

[23]  D. Heeger Half-squaring in responses of cat striate cells , 1992, Visual Neuroscience.

[24]  R. Shapley,et al.  Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex. , 1991, Journal of neurophysiology.

[25]  H. Spitzer,et al.  Complex-cell receptive field models , 1988, Progress in Neurobiology.

[26]  P Heggelund,et al.  Quantitative studies of the discharge fields of single cells in cat striate cortex. , 1986, The Journal of physiology.

[27]  D. Pollen,et al.  Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. , 1985, The Journal of physiology.

[28]  J. Hartigan,et al.  The Dip Test of Unimodality , 1985 .

[29]  D. Tolhurst,et al.  On the distinctness of simple and complex cells in the visual cortex of the cat. , 1983, The Journal of physiology.

[30]  D. Ferster,et al.  An intracellular analysis of geniculo‐cortical connectivity in area 17 of the cat. , 1983, The Journal of physiology.

[31]  V. D. Glezer,et al.  Linear and non-linear properties of simple and complex receptive fields in area 17 of the cat visual cortex , 1980, Biological Cybernetics.

[32]  J. Movshon,et al.  Receptive field organization of complex cells in the cat's striate cortex. , 1978, The Journal of physiology.

[33]  C. Gilbert Laminar differences in receptive field properties of cells in cat primary visual cortex , 1977, The Journal of physiology.

[34]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. , 1976, Journal of neurophysiology.

[35]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[36]  V. D. Glezer,et al.  Spatio-temporal organization of receptive fields of the cat striate cortex , 2004, Biological Cybernetics.

[37]  BsnNr C. Srorn,et al.  CLASSIFYING SIMPLE AND COMPLEX CELLS ON THE BASIS OF RESPONSE MODULATION , 2002 .

[38]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[39]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[40]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve. 1952. , 1990, Bulletin of mathematical biology.

[41]  J. P. Jones,et al.  The two-dimensional spectral structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[42]  G. Westheimer Spatial vision. , 1984, Annual review of psychology.

[43]  C. Gilbert Microcircuitry of the visual cortex. , 1983, Annual review of neuroscience.

[44]  Sokal Rr,et al.  Biometry: the principles and practice of statistics in biological research 2nd edition. , 1981 .

[45]  F. James Rohlf,et al.  Biometry: The Principles and Practice of Statistics in Biological Research , 1969 .

[46]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[47]  RussLL L. Ds Vnlos,et al.  SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .