Multi-Object Rearrangement with Monte Carlo Tree Search: A Case Study on Planar Nonprehensile Sorting

In this work, we address a planar non-prehensile sorting task. Here, a robot needs to push many densely packed objects belonging to different classes into a configuration where these classes are cl ...

[1]  Siddhartha S. Srinivasa,et al.  Unobservable Monte Carlo planning for nonprehensile rearrangement tasks , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[2]  Pieter Abbeel,et al.  Physics-based trajectory optimization for grasping in cluttered environments , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[3]  Dinesh Manocha,et al.  Path Planning among Movable Obstacles: A Probabilistically Complete Approach , 2008, WAFR.

[4]  Ehud Rivlin,et al.  Practical pushing planning for rearrangement tasks , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[5]  Wolfram Burgard,et al.  Learning to Singulate Objects using a Push Proposal Network , 2017, ISRR.

[6]  Simon M. Lucas,et al.  A Survey of Monte Carlo Tree Search Methods , 2012, IEEE Transactions on Computational Intelligence and AI in Games.

[7]  Dieter Fox,et al.  Interactive singulation of objects from a pile , 2012, 2012 IEEE International Conference on Robotics and Automation.

[8]  James J. Kuffner,et al.  Navigation among movable obstacles: real-time reasoning in complex environments , 2004, 4th IEEE/RAS International Conference on Humanoid Robots, 2004..

[9]  Mathieu Aubry,et al.  Monte-Carlo Tree Search for Efficient Visually Guided Rearrangement Planning , 2019, IEEE Robotics and Automation Letters.

[10]  Siddhartha S. Srinivasa,et al.  Nonprehensile whole arm rearrangement planning on physics manifolds , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[11]  Tamim Asfour,et al.  Manipulation Planning Among Movable Obstacles , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[12]  James M. Rehg,et al.  Guided pushing for object singulation , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  Kostas E. Bekris,et al.  High-Quality Tabletop Rearrangement with Overhand Grasps: Hardness Results and Fast Methods , 2017, Robotics: Science and Systems.

[14]  Gordon T. Wilfong Motion planning in the presence of movable obstacles , 1988, SCG '88.

[15]  Kevin M. Lynch,et al.  Stable Pushing: Mechanics, Controllability, and Planning , 1995, Int. J. Robotics Res..

[16]  Kostas E. Bekris,et al.  Efficiently solving general rearrangement tasks: A fast extension primitive for an incremental sampling-based planner , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[17]  Kostas E. Bekris,et al.  Dealing with Difficult Instances of Object Rearrangement , 2015, Robotics: Science and Systems.

[18]  Kenneth Y. Goldberg,et al.  Linear Push Policies to Increase Grasp Access for Robot Bin Picking , 2018, 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE).

[19]  Siddhartha S. Srinivasa,et al.  Sample-Efficient Learning of Nonprehensile Manipulation Policies via Physics-Based Informed State Distributions , 2018, ArXiv.

[20]  Mehmet Remzi Dogar,et al.  Real-Time Online Re-Planning for Grasping Under Clutter and Uncertainty , 2018, 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids).

[21]  Anca D. Dragan,et al.  Robot grasping in clutter: Using a hierarchy of supervisors for learning from demonstrations , 2016, 2016 IEEE International Conference on Automation Science and Engineering (CASE).

[22]  Peter Auer,et al.  Finite-time Analysis of the Multiarmed Bandit Problem , 2002, Machine Learning.

[23]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Danica Kragic,et al.  Learning Manipulation States and Actions for Efficient Non-prehensile Rearrangement Planning , 2019, ArXiv.

[25]  Mehmet Remzi Dogar,et al.  Planning with a Receding Horizon for Manipulation in Clutter Using a Learned Value Function , 2018, 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids).

[26]  Eric Huang,et al.  Large-Scale Multi-Object Rearrangement , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[27]  Siddhartha S. Srinivasa,et al.  Kinodynamic randomized rearrangement planning via dynamic transitions between statically stable states , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[28]  Mark H. Overmars,et al.  An Effective Framework for Path Planning Amidst Movable Obstacles , 2006, WAFR.

[29]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[30]  Maya Cakmak,et al.  Making objects graspable in confined environments through push and pull manipulation with a tool , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[31]  James J. Kuffner,et al.  Planning Among Movable Obstacles with Artificial Constraints , 2008, WAFR.

[32]  Mark Moll,et al.  Randomized Physics-Based Motion Planning for Grasping in Cluttered and Uncertain Environments , 2017, IEEE Robotics and Automation Letters.

[33]  Leslie Pack Kaelbling,et al.  FFRob: Leveraging symbolic planning for efficient task and motion planning , 2016, Int. J. Robotics Res..

[34]  Siddhartha S. Srinivasa,et al.  Rearrangement planning using object-centric and robot-centric action spaces , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).