The complexity of planar compliant motion planning under uncertainty

We consider the computational complexity of planning compliant motions in the plane, given geometric bounds on the uncertainty in sensing and control. We can give efficient algorithms for generating and verifying compliant motion strategies that are guaranteed to succeed as long as the sensing and control uncertainties lie within the specified bounds. We also consider the case where a compliant motion plan is required to succeed over some parametric family of geometries. While these problems are known to be intractable in three dimensions, we identify tractable subclasses in the plane.

[1]  Matthew T. Mason,et al.  Compliance and Force Control for Computer Controlled Manipulators , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  John E. Hopcroft,et al.  Motion of Objects in Contact , 1984 .

[3]  Stephen J. Buckley Planning and teaching compliant motion strategies , 1987 .

[4]  Michael A. Erdmann,et al.  Using Backprojections for Fine Motion Planning with Uncertainty , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[5]  Tomás Lozano-Pérez,et al.  On multiple moving objects , 2005, Algorithmica.

[6]  Russell H. Taylor,et al.  The synthesis of manipulator control programs from task-level specifications , 1976 .

[7]  Chandrajit L. Bajaj,et al.  Compliant motion planning with geometric models , 1987, SCG '87.

[8]  Daniel E. Koditschek,et al.  Exact robot navigation by means of potential functions: Some topological considerations , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[9]  John F. Canny,et al.  A new algebraic method for robot motion planning and real geometry , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[10]  Bruce Randall Donald,et al.  Simplified Voronoi diagrams , 1987, SCG '87.

[11]  D. Grigor'ev Complexity of deciding Tarski algebra , 1988 .

[12]  Bruce Randall Donald,et al.  A Search Algorithm for Motion Planning with Six Degrees of Freedom , 1987, Artif. Intell..

[13]  Chee-Keng Yap,et al.  A "Retraction" Method for Planning the Motion of a Disc , 1985, J. Algorithms.

[14]  Michael A. Erdmann,et al.  Using Backprojections for Fine Motion Planning with Uncertainty , 1986 .

[15]  Micha Sharir,et al.  Planning, geometry, and complexity of robot motion , 1986 .

[16]  Bruce Randall Donald,et al.  Robot motion planning with uncertainty in the geometric models of the robot and environment: A formal framework for error detection and recovery , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[17]  Rodney A. Brooks,et al.  A subdivision algorithm in configuration space for findpath with rotation , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[18]  Vladimir J. Lumelsky Dynamic path planning for a planar articulated robot arm moving amidst unknown obstacles , 1987, Autom..

[19]  Bruce Randall Donald Planning Multi-Step Error Detection and Recovery Strategies , 1990, Int. J. Robotics Res..

[20]  Harold Abelson,et al.  Turtle geometry : the computer as a medium for exploring mathematics , 1983 .

[21]  A. Koutsou A geometric reasoning system for moving an object while maintaining contact with others , 1985, SCG '85.

[22]  Chee Yap,et al.  Algorithmic motion planning , 1987 .

[23]  T. Lozano-Perez,et al.  Robot programming , 1983, Proceedings of the IEEE.

[24]  Daniel E. Whitney,et al.  Force Feedback Control of Manipulator Fine Motions , 1977 .

[25]  Randy C. Brost Automatic grasp planning in the presence of uncertainty , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[26]  Bruce Randall Donald Towards Task Level Robot Programming , 1987 .

[27]  Leonidas J. Guibas,et al.  Visibility of disjoint polygons , 2005, Algorithmica.

[28]  Bruce Randall Donald,et al.  A Geometric Approach to Error Detection and Recovery for Robot Motion Planning with Uncertainty , 1987, Artif. Intell..

[29]  Matthew T. Mason,et al.  Automatic planning of fine motions: Correctness and completeness , 1984, ICRA.

[30]  Balas K. Natarajan An algorithmic approach to the automated design of parts orienters , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[31]  B. Natarajan On Moving and Orienting Objects , 1986 .

[32]  John F. Canny,et al.  New lower bound techniques for robot motion planning problems , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[33]  Russell H. Taylor,et al.  Automatic Synthesis of Fine-Motion Strategies for Robots , 1984 .

[34]  Matthew T. Mason,et al.  An exploration of sensorless manipulation , 1986, IEEE J. Robotics Autom..

[35]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[36]  John F. Canny,et al.  Collision Detection for Moving Polyhedra , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Bruce Randall Donald Planning multistep error detection and recovery strategies , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.