Bioscope: actuated sensor network for biological science

Characterizing and understanding three-dimensional natural phenomena (e.g. the energy budget of a forest canopy) requires massive parallel sensing and data processing. Static wireless sensor networks enable sampling of the environment at a finer granularity than ever before to increase our knowledge of biological phenomena. However, static networks are spatially constrained to a limited number of sampling points. A combination of actuated and static sensor network, on the other hand, can reveal much greater detail about the phenomena. This is because a mobile node can achieve a high degree of spatial sampling and the static nodes can achieve a high degree of temporal sampling. This dissertation presents Bioscope: a set of algorithms and techniques that enable a scientist to use an actuated wireless sensor network to systematically study biological phenomena. It consists of two major components: (1) Space-filling component, an exploration method that samples a phenomenon such that the sample distribution is spread in space with maximum inter-sample distances. The primary goal of the space-filling component is a high degree of robustness in understanding the fundamentals of the phenomenon. (2) Adaptive component, which generates a model of the phenomenon through runtime adaptation and orchestrates sample collection such that the performance of regenerated model is maximized. The combination of these two approaches enables the scientist to efficiently observe the underlying phenomenon. This thesis presents statistical techniques that form the skeleton of a data collection experiment using an actuated sensor network and discusses the necessary modifications and design choices to adapt such schemes to the constraints of our problem. It describes our approach toward the problem and provides experimental evidences that demonstrate the applicability of our approach.

[1]  Viii Supervisor Sonar-Based Real-World Mapping and Navigation , 2001 .

[2]  Michael D. McKay,et al.  Latin hypercube sampling as a tool in uncertainty analysis of computer models , 1992, WSC '92.

[3]  J. Chambers Computing with Data: Concepts and Challenges , 1999 .

[4]  David J. C. MacKay,et al.  Information-Based Objective Functions for Active Data Selection , 1992, Neural Computation.

[5]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[6]  Anthony C. Atkinson,et al.  Optimum Design of Experiments , 2004 .

[7]  Evangelos A. Yfantis,et al.  Efficiency of kriging estimation for square, triangular, and hexagonal grids , 1987 .

[8]  Nripes Kumar Mandal On Robust Designs , 1989 .

[9]  Robert D. Nowak,et al.  Backcasting: adaptive sampling for sensor networks , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[10]  David B. Cooper,et al.  Practical Reliable Bayesian Recognition of 2D and 3D Objects Using Implicit Polynomials and Algebraic Invariants , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  A. Atkinson,et al.  Optimum design: 2000 , 2001 .

[12]  Jerome H. Friedman Multivariate adaptive regression splines (with discussion) , 1991 .

[13]  Steven M. LaValle,et al.  A game-theoretic framework for robot motion planning , 1996 .

[14]  Julian J. Faraway Sequential Design for the Nonparametric Regression of Curves and Surfaces , 1992 .

[15]  T. J. Mitchell,et al.  Exploratory designs for computational experiments , 1995 .

[16]  G. Swaminathan Robot Motion Planning , 2006 .

[17]  Nils J. Nilsson,et al.  A Mobile Automaton: An Application of Artificial Intelligence Techniques , 1969, IJCAI.

[18]  Alberto Elfes,et al.  Using occupancy grids for mobile robot perception and navigation , 1989, Computer.

[19]  J. Schwartz,et al.  On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .

[20]  Gaurav S. Sukhatme,et al.  Adaptive sampling for environmental robotics , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[21]  F. J. Hickernell Lattice rules: how well do they measure up? in random and quasi-random point sets , 1998 .

[22]  H. Müller Optimal designs for nonparametric kernel regression , 1984 .

[23]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[24]  John Anderson,et al.  An analysis of a large scale habitat monitoring application , 2004, SenSys '04.

[25]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[26]  J. Schwartz,et al.  On the “piano movers'” problem I. The case of a two‐dimensional rigid polygonal body moving amidst polygonal barriers , 1983 .

[27]  H. Chernoff Locally Optimal Designs for Estimating Parameters , 1953 .

[28]  Alberto Elfes,et al.  Sonar-based real-world mapping and navigation , 1987, IEEE J. Robotics Autom..

[29]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[30]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[31]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[32]  Guohua Pan,et al.  Local Regression and Likelihood , 1999, Technometrics.

[33]  Sebastian Thrun,et al.  Robotic mapping: a survey , 2003 .

[34]  Wei Hong,et al.  The design of an acquisitional query processor for sensor networks , 2003, SIGMOD '03.

[35]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[36]  P. Hellekalek,et al.  Random and Quasi-Random Point Sets , 1998 .

[37]  W. Näther Optimum experimental designs , 1994 .

[38]  Hans P. Moravec Sensor Fusion in Certainty Grids for Mobile Robots , 1988, AI Mag..

[39]  Inna Krykova,et al.  Evaluating of path-dependent securities with low discrepancy methods , 2003 .

[40]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[41]  Peter Hellekalek,et al.  On regularities of the distribution of special sequences , 1980 .

[42]  M. E. Johnson,et al.  Minimax and maximin distance designs , 1990 .

[43]  P. Laycock,et al.  Optimum Experimental Designs , 1995 .

[44]  Gaurav S. Sukhatme,et al.  Call and response: experiments in sampling the environment , 2004, SenSys '04.

[45]  S. Silvey Optimal Design: An Introduction to the Theory for Parameter Estimation , 1980 .

[46]  Jerry Zhao,et al.  Habitat monitoring: application driver for wireless communications technology , 2001, CCRV.

[47]  S K Thompson,et al.  Spatial sampling. , 1997, Ciba Foundation symposium.

[48]  David E. Culler,et al.  Telos: enabling ultra-low power wireless research , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[49]  Art B. Owen,et al.  Latin supercube sampling for very high-dimensional simulations , 1998, TOMC.

[50]  Dennis Cook,et al.  Constrained Optimization of Experimental Design , 1995 .

[51]  P. Chaudhuri,et al.  Piecewise polynomial regression trees , 1994 .

[52]  Arnold J. Stromberg,et al.  Number-theoretic Methods in Statistics , 1996 .

[53]  Margaret A. Oliver,et al.  Combining Nested and Linear Sampling for Determining the Scale and Form of Spatial Variation of Regionalized Variables , 2010 .

[54]  Gaurav S. Sukhatme,et al.  Networked Infomechanical Systems (NIMS) for Ambient Intelligence , 2005, Ambient Intelligence.

[55]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[56]  Brian Armstrong,et al.  On Finding Exciting Trajectories for Identification Experiments Involving Systems with Nonlinear Dynamics , 1989, Int. J. Robotics Res..

[57]  W. Youden,et al.  Selection of Efficient Methods for Soil Sampling1 , 1938 .

[58]  Fred J. Hickernell,et al.  A generalized discrepancy and quadrature error bound , 1998, Math. Comput..

[59]  M. A. Oliver,et al.  The elucidation of soil pattern in the Wyre Forest of the West Midlands, England. II. Spatial distribution. , 1987 .

[60]  Urbashi Mitra,et al.  Boundary Estimation in Sensor Networks: Theory and Methods , 2003, IPSN.

[61]  D. Krige A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .

[62]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[63]  John Anderson,et al.  Wireless sensor networks for habitat monitoring , 2002, WSNA '02.

[64]  R. Nowak,et al.  Backcasting: adaptive sampling for sensor networks , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[65]  M. Wand Local Regression and Likelihood , 2001 .

[66]  E. Braaten,et al.  An Improved Low-Discrepancy Sequence for Multidimensional Quasi-Monte Carlo Integration , 1979 .

[67]  Wei Hong,et al.  Proceedings of the 5th Symposium on Operating Systems Design and Implementation Tag: a Tiny Aggregation Service for Ad-hoc Sensor Networks , 2022 .