Cognitive neuroscience: Neural mechanisms for detecting and remembering novel events

The ability to detect and respond to novel events is crucial for survival in a rapidly changing environment. Four decades of neuroscientific research has begun to delineate the neural mechanisms by which the brain detects and responds to novelty. Here, we review this research and suggest how changes in neural processing at the cellular, synaptic and network levels allow us to detect, attend to and subsequently remember the occurrence of a novel event.

[1]  H. V. Restorff Über die Wirkung von Bereichsbildungen im Spurenfeld , 1933 .

[2]  E. N. Sokolov Higher nervous functions; the orienting reflex. , 1963, Annual review of physiology.

[3]  W. Wallace REVIEW OF THE HISTORICAL, EMPIRICAL, AND THEORETICAL STATUS OF THE VON RESTORFF PHENOMENON. , 1965, Psychological bulletin.

[4]  E. John,et al.  Evoked-Potential Correlates of Stimulus Uncertainty , 1965, Science.

[5]  E. H. Olst The orienting reflex , 1971 .

[6]  L. Maffei,et al.  Neural Correlate of Perceptual Adaptation to Gratings , 1973, Science.

[7]  A. Luria The Working Brain , 1973 .

[8]  N. Squires,et al.  Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. , 1975, Electroencephalography and clinical neurophysiology.

[9]  E. Courchesne,et al.  Stimulus novelty, task relevance and the visual evoked potential in man. , 1975, Electroencephalography and clinical neurophysiology.

[10]  P. Lennie,et al.  Pattern-selective adaptation in visual cortical neurones , 1979, Nature.

[11]  J. Rohrbaugh,et al.  Endogenous potentials generated in the human hippocampal formation and amygdala by infrequent events. , 1980, Science.

[12]  R. Moore,et al.  Noradrenergic innervation of the adult rat hippocampal formation , 1980, The Journal of comparative neurology.

[13]  M M Mesulam,et al.  Neural inputs into the nucleus basalis of the substantia innominata (Ch4) in the rhesus monkey. , 1984, Brain : a journal of neurology.

[14]  R. Knight Decreased response to novel stimuli after prefrontal lesions in man. , 1984, Electroencephalography and clinical neurophysiology.

[15]  S. Foote,et al.  Noradrenergic and serotoninergic innervation of cortical, thalamic, and tectal visual structures in old and new world monkeys , 1986, The Journal of comparative neurology.

[16]  M M Mesulam,et al.  Systematic regional differences in the cholinergic innervation of the primate cerebral cortex: Distribution of enzyme activities and some behavioral implications , 1986, Annals of neurology.

[17]  E. Donchin,et al.  P300 and recall in an incidental memory paradigm. , 1986, Psychophysiology.

[18]  C C Wood,et al.  Intracranial recordings of endogenous ERPs in humans. , 1985, Electroencephalography and clinical neurophysiology. Supplement.

[19]  R. Knight,et al.  Contributions of temporal-parietal junction to the human auditory P3 , 1989, Brain Research.

[20]  C. C. Wood,et al.  Task-dependent field potentials in human hippocampal formation , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  J. Morrison,et al.  Noradrenergic innervation of monkey prefrontal cortex: A dopamine‐β‐hydroxylase immunohistochemical study , 1989, The Journal of comparative neurology.

[22]  E Tulving,et al.  Priming and human memory systems. , 1990, Science.

[23]  E Donchin,et al.  Effects of mnemonic strategy manipulation in a Von Restorff paradigm. , 1990, Electroencephalography and clinical neurophysiology.

[24]  D. Ruchkin,et al.  Multiple sources of P3b associated with different types of information. , 1990, Psychophysiology.

[25]  ET Rolls,et al.  Learning and memory is reflected in the responses of reinforcement- related neurons in the primate basal forebrain , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  E. Miller,et al.  Habituation-like decrease in the responses of neurons in inferior temporal cortex of the macaque , 1991, Visual Neuroscience.

[27]  S. Foote,et al.  Electrophysiological evidence for the involvement of the locus coeruleus in alerting, orienting, and attending. , 1991, Progress in brain research.

[28]  G. Aston-Jones,et al.  Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. , 1991, Progress in brain research.

[29]  S. Yamaguchi,et al.  Anterior and posterior association cortex contributions to the somatosensory P300 , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  I. Riches,et al.  The effects of visual stimulation and memory on neurons of the hippocampal formation and the neighboring parahippocampal gyrus and inferior temporal cortex of the primate , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  이기수,et al.  II. , 1992 .

[32]  R. Johnson,et al.  On the neural generators of the P300 component of the event-related potential. , 2007, Psychophysiology.

[33]  M. Westerfield,et al.  Monkey P3 in an “oddball” paradigm: Pharmacological support for multiple neural sources , 1993, Brain Research Bulletin.

[34]  L. Záborszky,et al.  Catecholaminergic-cholinergic interaction in the basal forebrain. , 1993, Progress in brain research.

[35]  R. Desimone,et al.  Scopolamine affects short-term memory but not inferior temporal neurons. , 1993, Neuroreport.

[36]  R. Desimone,et al.  The representation of stimulus familiarity in anterior inferior temporal cortex. , 1993, Journal of neurophysiology.

[37]  J. Ringo,et al.  Stimulus specific adaptation in excited but not in inhibited cells in inferotemporal cortex of Macaque , 1994, Brain Research.

[38]  R. Desimone,et al.  Parallel neuronal mechanisms for short-term memory. , 1994, Science.

[39]  K. Paller The Neural Substrates of Cognitive Event-Related Potentials: A Review of Animal Models of P3 , 1994 .

[40]  G. V. Simpson,et al.  ERP amplitude and scalp distribution to target and novel events: effects of temporal order in young, middle-aged and older adults. , 1994, Brain research. Cognitive brain research.

[41]  S. Sara,et al.  Response to Novelty and its Rapid Habituation in Locus Coeruleus Neurons of the Freely Exploring Rat , 1995, The European journal of neuroscience.

[42]  K Lehnertz,et al.  Alterations of intrahippocampal cognitive potentials in temporal lobe epilepsy. , 1995, Electroencephalography and clinical neurophysiology.

[43]  G. McCarthy,et al.  Language-related field potentials in the anterior-medial temporal lobe: I. Intracranial distribution and neural generators , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  E. Halgren,et al.  Intracerebral potentials to rare target and distractor auditory and visual stimuli. III. Frontal cortex. , 1995, Electroencephalography and clinical neurophysiology.

[45]  G. McCarthy,et al.  Language-related field potentials in the anterior-medial temporal lobe: II. Effects of word type and semantic priming , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  E. Halgren,et al.  Intracerebral potentials to rare target and distractor auditory and visual stimuli. II. Medial, lateral and posterior temporal lobe. , 1995, Electroencephalography and clinical neurophysiology.

[47]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[48]  E. Halgren,et al.  Intracerebral potentials to rare target and distractor auditory and visual stimuli. I. Superior temporal plane and parietal lobe. , 1995, Electroencephalography and clinical neurophysiology.

[49]  R. Hunt The subtlety of distinctiveness: What von Restorff really did , 1995, Psychonomic bulletin & review.

[50]  E. Donchin,et al.  Encoding processes and memory organization: a model of the von Restorff effect. , 1995, Journal of experimental psychology. Learning, memory, and cognition.

[51]  S. Wise,et al.  Supplementary eye field contrasted with the frontal eye field during acquisition of conditional oculomotor associations. , 1995, Journal of neurophysiology.

[52]  R. Knight Contribution of human hippocampal region to novelty detection , 1996, Nature.

[53]  F. Craik,et al.  Novelty and familiarity activations in PET studies of memory encoding and retrieval. , 1996, Cerebral cortex.

[54]  J. Ringo Stimulus specific adaptation in inferior temporal and medial temporal cortex of the monkey , 1996, Behavioural Brain Research.

[55]  R. Desimone,et al.  Neural Mechanisms of Visual Working Memory in Prefrontal Cortex of the Macaque , 1996, The Journal of Neuroscience.

[56]  Klaus Lehnertz,et al.  Human temporal lobe potentials in verbal learning and memory processes , 1997, Neuropsychologia.

[57]  L. P. O'Keefe,et al.  Adaptation to contingencies in macaque primary visual cortex. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[58]  C. J. Maclean,et al.  Learning impairments following injection of a selective cholinergic immunotoxin, ME20.4 IgG-saporin, into the basal nucleus of Meynert in monkeys , 1997, Neuroscience.

[59]  R. Knight Distributed Cortical Network for Visual Attention , 1997, Journal of Cognitive Neuroscience.

[60]  R T Knight,et al.  Anatomic bases of event-related potentials and their relationship to novelty detection in humans. , 1998, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[61]  A. Dale,et al.  Functional-Anatomic Correlates of Object Priming in Humans Revealed by Rapid Presentation Event-Related fMRI , 1998, Neuron.

[62]  David Friedman,et al.  Effect of Sound Familiarity on the Event-Related Potentials Elicited by Novel Environmental Sounds , 1998, Brain and Cognition.

[63]  E. Halgren,et al.  Generators of the late cognitive potentials in auditory and visual oddball tasks. , 1998, Electroencephalography and clinical neurophysiology.

[64]  Phillip J. Holcomb,et al.  Regulation of attention to novel stimuli by frontal lobes: an event‐related potential study , 1998, Neuroreport.

[65]  M. W. Brown,et al.  Recognition memory: neuronal substrates of the judgement of prior occurrence , 1998, Progress in Neurobiology.

[66]  K Lehnertz,et al.  Verbal novelty detection within the human hippocampus proper. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[67]  J. Polich,et al.  Stimulus context determines P3a and P3b. , 1998, Psychophysiology.

[68]  D Friedman,et al.  Effects of aging on the novelty P3 during attend and ignore oddball tasks. , 1998, Psychophysiology.

[69]  E. Miller,et al.  Neural Activity in the Primate Prefrontal Cortex during Associative Learning , 1998, Neuron.

[70]  Alex Martin,et al.  Properties and mechanisms of perceptual priming , 1998, Current Opinion in Neurobiology.

[71]  J. Polich,et al.  P3a, perceptual distinctiveness, and stimulus modality. , 1998, Brain research. Cognitive brain research.

[72]  Amanda Parker,et al.  The von Restorff Effect in Visual Object Recognition Memory in Humans and Monkeys: The Role of Frontal/Perirhinal Interaction , 1998, Journal of Cognitive Neuroscience.

[73]  T. Nakada,et al.  A Review of EEG and Blood Flow Data , 1998, Reviews in the neurosciences.

[74]  K Lehnertz,et al.  Evidence relating human verbal memory to hippocampal N-methyl-D-aspartate receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[75]  F. Guillem,et al.  Short-and Long-Delay Intracranial ERP Repetition Effects Dissociate Memory Systems in the Human Brain , 1999, Journal of Cognitive Neuroscience.

[76]  E. Halgren,et al.  Intracranial ERPs in humans during a lateralized visual oddball task: I. Occipital and peri-Rolandic recordings , 1999, Clinical Neurophysiology.

[77]  Ken A. Paller,et al.  Frontal Brain Activity during Episodic and Semantic Retrieval: Insights from Event-Related Potentials , 1999, Journal of Cognitive Neuroscience.

[78]  Karl J. Friston,et al.  Segregating the functions of human hippocampus. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Patrick Chauvel,et al.  Intracranial ERPs in humans during a lateralized visual oddball task: II. Temporal, parietal, and frontal recordings , 1999, Clinical Neurophysiology.

[80]  Ulrich Hegerl,et al.  Neurochemical Substrates and Neuroanatomical Generators of the Event-Related P300 , 1999, Neuropsychobiology.

[81]  M. Hasselmo Neuromodulation: acetylcholine and memory consolidation , 1999, Trends in Cognitive Sciences.

[82]  A. Friederici,et al.  The functional neuroanatomy of novelty processing: integrating ERP and fMRI results. , 1999, Cerebral cortex.

[83]  M. Kutas,et al.  Limbic P300s in temporal lobe epilepsy with and without Ammon's horn sclerosis , 1999, The European journal of neuroscience.

[84]  Karl J. Friston,et al.  Amygdala–Hippocampal Involvement in Human Aversive Trace Conditioning Revealed through Event-Related Functional Magnetic Resonance Imaging , 1999, The Journal of Neuroscience.

[85]  E. Miller,et al.  Prospective Coding for Objects in Primate Prefrontal Cortex , 1999, The Journal of Neuroscience.

[86]  P. Lennie,et al.  Rapid adaptation in visual cortex to the structure of images. , 1999, Science.

[87]  E. Miller,et al.  Effects of Visual Experience on the Representation of Objects in the Prefrontal Cortex , 2000, Neuron.

[88]  P. Goldman-Rakic,et al.  Prefrontal Activation Evoked by Infrequent Target and Novel Stimuli in a Visual Target Detection Task: An Event-Related Functional Magnetic Resonance Imaging Study , 2000, The Journal of Neuroscience.

[89]  D. Potter,et al.  The effect of cholinergic receptor blockade by scopolamine on memory performance and the auditory P3 , 2000 .

[90]  M. Hasselmo,et al.  A model for experience-dependent changes in the responses of inferotemporal neurons , 2000, Network.

[91]  R. Knight,et al.  Neural origins of the P300. , 2000, Critical reviews in neurobiology.

[92]  J. Downar,et al.  A multimodal cortical network for the detection of changes in the sensory environment , 2000, Nature Neuroscience.

[93]  Marcia K. Johnson,et al.  Left Anterior Prefrontal Activation Increases with Demands to Recall Specific Perceptual Information , 2000, The Journal of Neuroscience.

[94]  M. Mesulam,et al.  The central role of the prefrontal cortex in directing attention to novel events. , 2000, Brain : a journal of neurology.

[95]  R. Benson,et al.  Responses to rare visual target and distractor stimuli using event-related fMRI. , 2000, Journal of neurophysiology.

[96]  M. Sur,et al.  Adaptation-Induced Plasticity of Orientation Tuning in Adult Visual Cortex , 2000, Neuron.

[97]  Maria V. Sanchez-Vives,et al.  Cellular Mechanisms of Long-Lasting Adaptation in Visual Cortical Neurons In Vitro , 2000, The Journal of Neuroscience.

[98]  N. Kanwisher,et al.  Cortical Regions Involved in Perceiving Object Shape , 2000, The Journal of Neuroscience.

[99]  C. Stern,et al.  Prefrontal–Temporal Circuitry for Episodic Encoding and Subsequent Memory , 2000, The Journal of Neuroscience.

[100]  R Kikinis,et al.  Disruption of attention to novel events after frontal lobe injury in humans , 2000, Journal of neurology, neurosurgery, and psychiatry.

[101]  James L. McClelland,et al.  Repetition priming of words, pseudowords, and nonwords. , 2000, Journal of experimental psychology. Learning, memory, and cognition.

[102]  D. Potter,et al.  Scopolamine impairs memory performance and reduces frontal but not parietal visual P3 amplitude , 2000, Biological Psychology.

[103]  K. Grill-Spector,et al.  fMR-adaptation: a tool for studying the functional properties of human cortical neurons. , 2001, Acta psychologica.

[104]  R. Habib On the relation between conceptual priming, neural priming, and novelty assessment. , 2001, Scandinavian journal of psychology.

[105]  R. Simons,et al.  On the relationship of P3a and the Novelty-P3 , 2001, Biological Psychology.

[106]  John Polich,et al.  P3a from a passive visual stimulus task , 2001, Clinical Neurophysiology.

[107]  G. Orban,et al.  Practising orientation identification improves orientation coding in V1 neurons , 2001, Nature.

[108]  Nikos K. Logothetis,et al.  Motion Processing in the Macaque: Revisited with Functional Magnetic Resonance Imaging , 2001, The Journal of Neuroscience.

[109]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[110]  Douglas Greve,et al.  Functional MRI detection of pharmacologically induced memory impairment , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[111]  B. Strange,et al.  Adaptive anterior hippocampal responses to oddball stimuli , 2001, Hippocampus.

[112]  M. Gluck,et al.  Interactive memory systems in the human brain , 2001, Nature.

[113]  D. Heeger,et al.  Neuronal Basis of the Motion Aftereffect Reconsidered , 2001, Neuron.

[114]  I. Tendolkar,et al.  Integrated brain activity in medial temporal and prefrontal areas predicts subsequent memory performance: human declarative memory formation at the system level , 2001, Brain Research Bulletin.

[115]  D. Friedman,et al.  The novelty P3: an event-related brain potential (ERP) sign of the brain's evaluation of novelty , 2001, Neuroscience & Biobehavioral Reviews.

[116]  K. Kiehl,et al.  An event-related fMRI study of visual and auditory oddball tasks , 2001 .

[117]  K. Kiehl,et al.  Neural sources involved in auditory target detection and novelty processing: an event-related fMRI study. , 2001, Psychophysiology.

[118]  C. Gilbert,et al.  The Neural Basis of Perceptual Learning , 2001, Neuron.

[119]  Amanda Parker,et al.  Crossed unilateral lesions of medial forebrain bundle and either inferior temporal or frontal cortex impair object recognition memory in Rhesus monkeys , 2001, Behavioural Brain Research.

[120]  Malcolm W. Brown,et al.  Recognition memory: What are the roles of the perirhinal cortex and hippocampus? , 2001, Nature Reviews Neuroscience.

[121]  L. Bianchi,et al.  Effects of novelty and habituation on acetylcholine, GABA, and glutamate release from the frontal cortex and hippocampus of freely moving rats , 2001, Neuroscience.

[122]  Karl J. Friston,et al.  Pharmacological Modulation of Behavioral and Neuronal Correlates of Repetition Priming , 2001, The Journal of Neuroscience.

[123]  D. Gaffan,et al.  Crossed unilateral lesions of the medial forebrain bundle and either inferior temporal or frontal cortex impair object–reward association learning in Rhesus monkeys , 2001, Neuropsychologia.

[124]  M. D’Esposito,et al.  Medial Temporal Lobe Activity Associated with Active Maintenance of Novel Information , 2001, Neuron.

[125]  Robert T. Knight,et al.  Orbitofrontal cortex and dynamic filtering of emotional stimuli , 2002, Cognitive, affective & behavioral neuroscience.

[126]  J. Maunsell,et al.  Physiological correlates of perceptual learning in monkey V1 and V2. , 2002, Journal of neurophysiology.

[127]  N. Logothetis The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[128]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[129]  Q. Gu,et al.  Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity , 2002, Neuroscience.

[130]  E. Miller,et al.  Timecourse of object‐related neural activity in the primate prefrontal cortex during a short‐term memory task , 2002, The European journal of neuroscience.

[131]  G. McCarthy,et al.  Perceiving patterns in random series: dynamic processing of sequence in prefrontal cortex , 2002, Nature Neuroscience.

[132]  Richard N A Henson,et al.  Scopolamine but Not Lorazepam Modulates Face Repetition Priming: A Psychopharmacological fMRI Study , 2002, Neuropsychopharmacology.

[133]  Anthony R. McIntosh,et al.  Memory encoding and hippocampally-based novelty/familiarity discrimination networks , 2003, Neuropsychologia.

[134]  R. Henson,et al.  Neural response suppression, haemodynamic repetition effects, and behavioural priming , 2003, Neuropsychologia.

[135]  K. Kiehl,et al.  Reproducibility of the hemodynamic response to auditory oddball stimuli: A six‐week test–retest study , 2003, Human brain mapping.

[136]  M. W. Brown,et al.  Neuronal activity related to visual recognition memory: long-term memory and the encoding of recency and familiarity information in the primate anterior and medial inferior temporal and rhinal cortex , 2004, Experimental Brain Research.

[137]  E. Rolls,et al.  Responses of neurons in the inferior temporal cortex in short term and serial recognition memory tasks , 2004, Experimental Brain Research.

[138]  Ahmet Ademoglu,et al.  Wavelet Analysis of P3a and P3b , 2004, Brain Topography.

[139]  E. T. Rolls,et al.  Neuronal responses related to the novelty and familiarity of visual stimuli in the substantia innominata, diagonal band of Broca and periventricular region of the primate basal forebrain , 2004, Experimental Brain Research.

[140]  M. Hasselmo,et al.  The effect of learning on the face selective responses of neurons in the cortex in the superior temporal sulcus of the monkey , 2004, Experimental Brain Research.

[141]  N. Logothetis,et al.  Neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging , 2004 .

[142]  F. Richer,et al.  Human intracerebral potentials associated with target, novel, and omitted auditory stimuli , 2005, Brain Topography.