Grasp planning with soft hands using Bounding Box object decomposition

In this paper, we present a method to plan grasps for soft hands. Considering that soft hands can easily conform to the shape an the object, with preference to certain types of basic geometries and dimensions, we decompose the object into one type of these geometries, particularly into Minimal Volume Bounding Boxes (MVBBs), which are proved to be efficiently graspable by the hand we use. A set of hand poses are then generated using geometric information extracted from such MVBBs. All hand postures are used in a dynamic simulator of the PISA/IIT Soft Hand and put on a test to evaluate if a proposed hand posture leads to a successful grasp. We show, through a set of numerical simulations, that the probability of success of the hand poses generated with the proposed algorithm is very good and represents an evident improvement with respect to our previous results published in [1].

[1]  Danica Kragic,et al.  Selection of robot pre-grasps using box-based shape approximation , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  Danica Kragic,et al.  Minimum volume bounding box decomposition for shape approximation in robot grasping , 2008, 2008 IEEE International Conference on Robotics and Automation.

[3]  Markus Vincze,et al.  Efficient 3D Object Detection by Fitting Superquadrics to Range Image Data for Robot's Object Manipulation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[4]  Karun B. Shimoga,et al.  Robot Grasp Synthesis Algorithms: A Survey , 1996, Int. J. Robotics Res..

[5]  Atilla Baskurt,et al.  Segmentation and Superquadric Modeling of 3D Objects , 2003, WSCG.

[6]  Oliver Brock,et al.  A Novel Type of Compliant, Underactuated Robotic Hand for Dexterous Grasping , 2014, Robotics: Science and Systems.

[7]  Manuel G. Catalano,et al.  Grasping with Soft Hands , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[8]  Danica Kragic,et al.  Learning of 2D grasping strategies from box-based 3D object approximations , 2009, Robotics: Science and Systems.

[9]  Manuel G. Catalano,et al.  Adaptive synergies for the design and control of the Pisa/IIT SoftHand , 2014, Int. J. Robotics Res..

[10]  Gerd Hirzinger,et al.  Grasp planning: how to choose a suitable task wrench space , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[11]  Henrik I. Christensen,et al.  Automatic grasp planning using shape primitives , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[12]  Peter K. Allen,et al.  Grasp Planning via Decomposition Trees , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.