Sparsification of motion-planning roadmaps by edge contraction
暂无分享,去创建一个
[1] Michiel H. M. Smid,et al. Euclidean spanners: short, thin, and lanky , 1995, STOC '95.
[2] Pankaj K. Agarwal,et al. Sparsification of motion-planning roadmaps by edge contraction , 2013, 2013 IEEE International Conference on Robotics and Automation.
[3] Thierry Siméon,et al. Path Deformation Roadmaps , 2006, WAFR.
[4] Pankaj K. Agarwal,et al. Approximate Euclidean shortest paths amid convex obstacles , 2009, SODA.
[5] Subhash Suri,et al. Surface approximation and geometric partitions , 1994, SODA '94.
[6] Peter J. Haas,et al. Synopses for Massive Data , 2012 .
[7] Kostas E. Bekris,et al. Improving sparse roadmap spanners , 2013, 2013 IEEE International Conference on Robotics and Automation.
[8] Jörg-Rüdiger Sack,et al. Determining approximate shortest paths on weighted polyhedral surfaces , 2005, JACM.
[9] Lydia E. Kavraki,et al. Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..
[10] Sariel Har-Peled. Constructing Approximate Shortest Path Maps in Three Dimensions , 1999, SIAM J. Comput..
[11] Dan Halperin,et al. Sampling-Diagram Automata: A Tool for Analyzing Path Quality in Tree Planners , 2010, WAFR.
[12] Jonathan D. Cohen,et al. Level of Detail for 3D Graphics , 2012 .
[13] Thierry Siméon,et al. Visibility-based probabilistic roadmaps for motion planning , 2000, Adv. Robotics.
[14] Michael Elkin,et al. Optimal euclidean spanners: really short, thin and lanky , 2012, STOC '13.
[15] Kenneth L. Clarkson,et al. Approximation algorithms for shortest path motion planning , 1987, STOC.
[16] Nancy M. Amato,et al. A general framework for sampling on the medial axis of the free space , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).
[17] Mark H. Overmars,et al. Creating High-quality Paths for Motion Planning , 2007, Int. J. Robotics Res..
[18] Steven M. LaValle,et al. RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).
[19] Devin J. Balkcom,et al. A fast streaming spanner algorithm for incrementally constructing sparse roadmaps , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.
[20] Rajeev Motwani,et al. Path Planning in Expansive Configuration Spaces , 1999, Int. J. Comput. Geom. Appl..
[21] Micha Sharir,et al. Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.
[22] Kostas E. Bekris,et al. Computing spanners of asymptotically optimal probabilistic roadmaps , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.
[23] Kostas E. Bekris,et al. Towards small asymptotically near-optimal roadmaps , 2012, 2012 IEEE International Conference on Robotics and Automation.
[24] Dan Halperin,et al. A Little More, a Lot Better: Improving Path Quality by a Path-Merging Algorithm , 2011, IEEE Transactions on Robotics.
[25] Simon Parsons,et al. Principles of Robot Motion: Theory, Algorithms and Implementations by Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun, 603 pp., $60.00, ISBN 0-262-033275 , 2007, The Knowledge Engineering Review.
[26] Tony DeRose,et al. Mesh optimization , 1993, SIGGRAPH.
[27] Pankaj K. Agarwal,et al. Approximating Shortest Paths on a Nonconvex Polyhedron , 2000, SIAM J. Comput..
[28] Giri Narasimhan,et al. Geometric spanner networks , 2007 .
[29] Emilio Frazzoli,et al. Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..
[30] Lydia E. Kavraki,et al. The Open Motion Planning Library , 2012, IEEE Robotics & Automation Magazine.
[31] Herbert Edelsbrunner,et al. Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.
[32] Didier Wolf,et al. Capture of homotopy classes with probabilistic road map , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.
[33] Kostas E. Bekris,et al. Asymptotically Near-Optimal Planning With Probabilistic Roadmap Spanners , 2013, IEEE Transactions on Robotics.
[34] Dan Halperin,et al. CGAL Arrangements and Their Applications - A Step-by-Step Guide , 2012, Geometry and Computing.
[35] Michael Garland,et al. Surface simplification using quadric error metrics , 1997, SIGGRAPH.
[36] Mark H. Overmars,et al. Useful cycles in probabilistic roadmap graphs , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.