Sparsification of motion-planning roadmaps by edge contraction

Roadmaps constructed by the recently introduced PRM* algorithm for asymptotically-optimal motion planning encode high-quality paths yet can be extremely dense. We consider the problem of sparsifying the roadmap, i.e. reducing its size, while minimizing the degradation of the quality of paths that can be extracted from the resulting roadmap. We present a simple, effective sparsifying algorithm, called roadmap sparsification by edgecontraction (RSEC). The primitive operation used by RSEC is edgecontraction —the contraction of a roadmap edge (v′,v″) to a new vertex v ’ and the connection of the new vertex v to the neighboring vertices of the contracted edge’s vertices (i.e. to all neighbors of v ′ and v ′ ). For certain scenarios, we compress more than 97% of the edges and vertices of a given roadmap at the cost of degradation of average shortest path length by at most 4%.

[1]  Michiel H. M. Smid,et al.  Euclidean spanners: short, thin, and lanky , 1995, STOC '95.

[2]  Pankaj K. Agarwal,et al.  Sparsification of motion-planning roadmaps by edge contraction , 2013, 2013 IEEE International Conference on Robotics and Automation.

[3]  Thierry Siméon,et al.  Path Deformation Roadmaps , 2006, WAFR.

[4]  Pankaj K. Agarwal,et al.  Approximate Euclidean shortest paths amid convex obstacles , 2009, SODA.

[5]  Subhash Suri,et al.  Surface approximation and geometric partitions , 1994, SODA '94.

[6]  Peter J. Haas,et al.  Synopses for Massive Data , 2012 .

[7]  Kostas E. Bekris,et al.  Improving sparse roadmap spanners , 2013, 2013 IEEE International Conference on Robotics and Automation.

[8]  Jörg-Rüdiger Sack,et al.  Determining approximate shortest paths on weighted polyhedral surfaces , 2005, JACM.

[9]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[10]  Sariel Har-Peled Constructing Approximate Shortest Path Maps in Three Dimensions , 1999, SIAM J. Comput..

[11]  Dan Halperin,et al.  Sampling-Diagram Automata: A Tool for Analyzing Path Quality in Tree Planners , 2010, WAFR.

[12]  Jonathan D. Cohen,et al.  Level of Detail for 3D Graphics , 2012 .

[13]  Thierry Siméon,et al.  Visibility-based probabilistic roadmaps for motion planning , 2000, Adv. Robotics.

[14]  Michael Elkin,et al.  Optimal euclidean spanners: really short, thin and lanky , 2012, STOC '13.

[15]  Kenneth L. Clarkson,et al.  Approximation algorithms for shortest path motion planning , 1987, STOC.

[16]  Nancy M. Amato,et al.  A general framework for sampling on the medial axis of the free space , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[17]  Mark H. Overmars,et al.  Creating High-quality Paths for Motion Planning , 2007, Int. J. Robotics Res..

[18]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[19]  Devin J. Balkcom,et al.  A fast streaming spanner algorithm for incrementally constructing sparse roadmaps , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  Rajeev Motwani,et al.  Path Planning in Expansive Configuration Spaces , 1999, Int. J. Comput. Geom. Appl..

[21]  Micha Sharir,et al.  Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.

[22]  Kostas E. Bekris,et al.  Computing spanners of asymptotically optimal probabilistic roadmaps , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  Kostas E. Bekris,et al.  Towards small asymptotically near-optimal roadmaps , 2012, 2012 IEEE International Conference on Robotics and Automation.

[24]  Dan Halperin,et al.  A Little More, a Lot Better: Improving Path Quality by a Path-Merging Algorithm , 2011, IEEE Transactions on Robotics.

[25]  Simon Parsons,et al.  Principles of Robot Motion: Theory, Algorithms and Implementations by Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun, 603 pp., $60.00, ISBN 0-262-033275 , 2007, The Knowledge Engineering Review.

[26]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[27]  Pankaj K. Agarwal,et al.  Approximating Shortest Paths on a Nonconvex Polyhedron , 2000, SIAM J. Comput..

[28]  Giri Narasimhan,et al.  Geometric spanner networks , 2007 .

[29]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[30]  Lydia E. Kavraki,et al.  The Open Motion Planning Library , 2012, IEEE Robotics & Automation Magazine.

[31]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.

[32]  Didier Wolf,et al.  Capture of homotopy classes with probabilistic road map , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[33]  Kostas E. Bekris,et al.  Asymptotically Near-Optimal Planning With Probabilistic Roadmap Spanners , 2013, IEEE Transactions on Robotics.

[34]  Dan Halperin,et al.  CGAL Arrangements and Their Applications - A Step-by-Step Guide , 2012, Geometry and Computing.

[35]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[36]  Mark H. Overmars,et al.  Useful cycles in probabilistic roadmap graphs , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.