Efficient global path planning during dense map deformation

This paper presents an efficient approach to global path planning for multiple agents during large-scale map deformation. The problem of planning using dense data during large-scale map deformation is addressed by using a hybrid metric-topological planner that maintains locally consistent policies. These policies are cached, providing efficiency gains relative to alternate planning approaches that are characterized using complexity analysis. Simulation results show the effectiveness of this approach in handling notable map deformation while achieving good efficiency.

[1]  Jose Guivant,et al.  Pseudo Priority Queues for Real-Time Performance on Dynamic Programming Processes Applied to Path Planning , 2008 .

[2]  José E. Guivant,et al.  Efficient path planning in deformable maps , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  Ian D. Reid,et al.  Vast-scale Outdoor Navigation Using Adaptive Relative Bundle Adjustment , 2010, Int. J. Robotics Res..

[4]  Eduardo Mario Nebot,et al.  DenseSLAM: Simultaneous Localization and Dense Mapping , 2006, Int. J. Robotics Res..

[5]  Joachim Hertzberg,et al.  6D SLAM with Cached kd-tree Search , 2007, Robot Navigation.

[6]  Pär Buschka,et al.  An investigation of hybrid maps for mobile robots , 2005 .

[7]  Eduardo Mario Nebot,et al.  The HYbrid metric maps (HYMMs): a novel map representation for DenseSLAM , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[8]  Kamal K. Gupta,et al.  RRT-SLAM for motion planning with motion and map uncertainty for robot exploration , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[9]  Edwin Olson,et al.  Fast iterative alignment of pose graphs with poor initial estimates , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[10]  Shin'ichi Yuta,et al.  Map representation of a large in-door environment with path planning and navigation abilities for an autonomous mobile robot with its implementation on a real robot☆ , 1993 .

[11]  Sebastian Thrun,et al.  Learning Metric-Topological Maps for Indoor Mobile Robot Navigation , 1998, Artif. Intell..

[12]  Gamini Dissanayake,et al.  D-SLAM: A Decoupled Solution to Simultaneous Localization and Mapping , 2007, Int. J. Robotics Res..

[13]  Udo Frese,et al.  A Discussion of Simultaneous Localization and Mapping , 2006, Auton. Robots.

[14]  Bernardo Wagner,et al.  Colored 2D maps for robot navigation with 3D sensor data , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[15]  Anthony Stentz,et al.  The Delayed D* Algorithm for Efficient Path Replanning , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[16]  Cyrill Stachniss,et al.  Hierarchical optimization on manifolds for online 2D and 3D mapping , 2010, 2010 IEEE International Conference on Robotics and Automation.

[17]  Howie Choset,et al.  The hierarchical atlas , 2005, IEEE Transactions on Robotics.

[18]  Margaret E. Jefferies,et al.  Robot Cognitive Mapping - A Role for a Global Metric Map in a Cognitive Mapping Process , 2008, Robotics and Cognitive Approaches to Spatial Mapping.

[19]  Benjamin Kuipers,et al.  Factoring the Mapping Problem: Mobile Robot Map-building in the Hybrid Spatial Semantic Hierarchy , 2010, Int. J. Robotics Res..

[20]  Sebastian Thrun,et al.  Path Planning for Autonomous Vehicles in Unknown Semi-structured Environments , 2010, Int. J. Robotics Res..

[21]  Guillermo Sapiro,et al.  O(N) implementation of the fast marching algorithm , 2006, Journal of Computational Physics.

[22]  David Filliat,et al.  Map-based navigation in mobile robots: II. A review of map-learning and path-planning strategies , 2003, Cognitive Systems Research.

[23]  Nicola Tomatis,et al.  Hybrid, Metric-Topological Representation for Localization and Mapping , 2008, Robotics and Cognitive Approaches to Spatial Mapping.

[24]  Udo Frese An O(log n) algorithm for simultaneous localization and mapping of mobile robots in indoor environments , 2004 .

[25]  Favio R. Masson,et al.  Navigation and Mapping in Large Unstructured Environments , 2004, Int. J. Robotics Res..

[26]  Javier González,et al.  Toward a Unified Bayesian Approach to Hybrid Metric--Topological SLAM , 2008, IEEE Transactions on Robotics.

[27]  Thierry Siméon,et al.  Transition-based RRT for path planning in continuous cost spaces , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Alexei Makarenko,et al.  An experiment in integrated exploration , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[29]  Tom Duckett,et al.  A Multigrid Approach for Acceleration Relaxation-Based SLAM , 2003, AMS.

[30]  Ian D. Reid,et al.  Article in Press Robotics and Autonomous Systems ( ) – Robotics and Autonomous Systems a Comparison of Loop Closing Techniques in Monocular Slam , 2022 .