Coverage for robotics – A survey of recent results

This paper surveys recent results in coverage path planning, a new path planning approach that determines a path for a robot to pass over all points in its free space. Unlike conventional point-to-point path planning, coverage path planning enables applications such as robotic de-mining, snow removal, lawn mowing, car-body painting, machine milling, etc. This paper will focus on coverage path planning algorithms for mobile robots constrained to operate in the plane. These algorithms can be classified as either heuristic or complete. It is our conjecture that most complete algorithms use an exact cellular decomposition, either explicitly or implicitly, to achieve coverage. Therefore, this paper organizes the coverage algorithms into four categories: heuristic, approximate, partial-approximate and exact cellular decompositions. The final section describes some provably complete multi-robot coverage algorithms.

[1]  Chee-Keng Yap,et al.  A "Retraction" Method for Planning the Motion of a Disc , 1985, J. Algorithms.

[2]  Hans P. Moravec,et al.  High resolution maps from wide angle sonar , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[3]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[4]  Ernest L. Hall,et al.  Region filling operations for mobile robot using computer graphics , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[5]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[6]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[7]  Ernest L. Hall,et al.  Region filling operations with random obstacle avoidance for mobile robots , 1988, J. Field Robotics.

[8]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[9]  Vladimir J. Lumelsky,et al.  Dynamic path planning in sensor-based terrain acquisition , 1990, IEEE Trans. Robotics Autom..

[10]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[11]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[12]  Tucker Balch,et al.  Making a Clean Sweep: Behavior Based Vacuuming , 1993 .

[13]  Esther M. Arkin,et al.  Approximation Algorithms for the Geometric Covering Salesman Problem , 1994, Discret. Appl. Math..

[14]  E. Gat,et al.  Robot navigation by conditional sequencing , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[15]  Tucker R. Balch,et al.  Communication in reactive multiagent robotic systems , 1995, Auton. Robots.

[16]  Douglas W. Gage,et al.  Randomized search strategies with imperfect sensors , 1994, Other Conferences.

[17]  J. R. VanderHeide Terrain coverage of an unknown room by an autonomous mobile robot , 1995 .

[18]  Günther Schmidt,et al.  Path planning and guidance techniques for an autonomous mobile cleaning robot , 1995, Robotics Auton. Syst..

[19]  Günther Schmidt,et al.  Path planning and guidance techniques for an autonomous mobile cleaning robot Robotics and Autonomous Systems 14 (1995) 199-212 , 1995, Robotics Auton. Syst..

[20]  Eiichi Yoshida,et al.  Cooperative sweeping by multiple mobile robots , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[21]  Vladimir J. Lumelsky,et al.  A terrain-covering algorithm for an AUV , 1996, Auton. Robots.

[22]  Anthony Stentz,et al.  First results in vision-based crop line tracking , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[23]  Israel A. Wagner,et al.  Smell as a Computational Resource - A Lesson We Can Learn from the Ant , 1996, ISTCS.

[24]  Gregory Dudek,et al.  Multi-Robot Exploration of an Unknown Environment, Efficiently Reducing the Odometry Error , 1997, IJCAI.

[25]  Steven Y. Goldsmith,et al.  Exhaustive Geographic Search with Mobile Robots Along Space-Filling Curves , 1998, CRW.

[26]  Ralph L. Hollis,et al.  Contact sensor-based coverage of rectilinear environments , 1999, Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014).

[27]  Israel A. Wagner,et al.  Distributed covering by ant-robots using evaporating traces , 1999, IEEE Trans. Robotics Autom..

[28]  Ralph L. Hollis,et al.  Complete distributed coverage of rectilinear environments , 2000 .

[29]  Howie Choset,et al.  Critical point sensing in unknown environments , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[30]  Israel A. Wagner,et al.  ANTS: Agents on Networks, Trees, and Subgraphs , 2000, Future Gener. Comput. Syst..

[31]  Israel A. Wagner,et al.  MAC Versus PC: Determinism and Randomness as Complementary Approaches to Robotic Exploration of Continuous Unknown Domains , 2000, Int. J. Robotics Res..

[32]  Howie Choset,et al.  Exact cellular decompositions in terms of critical points of Morse functions , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[33]  Viii Supervisor Sonar-Based Real-World Mapping and Navigation , 2001 .

[34]  Israel A. Wagner,et al.  Efficiently searching a graph by a smell-oriented vertex process , 2004, Annals of Mathematics and Artificial Intelligence.

[35]  Vladimir J. Lumelsky,et al.  Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape , 1987, Algorithmica.