An Adaptive Multi-Objective Particle Swarm Optimization Algorithm with Constraint Handling

In this article we describe a Particle Swarm Optimization (PSO) approach to handling constraints in Multi-objective Optimization (MOO). The method is called Constrained Adaptive Multi-objective Particle Swarm Optimization (CAMOPSO). CAMOPSO is based on the Adaptive Multi-objective Particle Swarm Optimization (AMOPSO) method proposed in [1]. As in AMOPSO, the inertia and the acceleration coefficients are determined adaptively in CAMOPSO, while a penalty based approach is used for handling constraints. In this article, we first review some existing MOO approaches based on PSO, and then describe the AMOPSO method in detail along with experimental results on six unconstrained MOO problems [1]. Thereafter, the way of handling constraints in CAMOPSO is discussed. Its performance has been compared with that of the NSGA-II algorithm, which has an inherent approach for handling constraints. The results demonstrate the effectiveness of CAMOPSO for the test problems considered.

[1]  M. N. Vrahatis,et al.  Particle swarm optimization method in multiobjective problems , 2002, SAC '02.

[2]  Michael de la Maza,et al.  Book review: Genetic Algorithms + Data Structures = Evolution Programs by Zbigniew Michalewicz (Springer-Verlag, 1992) , 1993 .

[3]  Xiaodong Li,et al.  A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization , 2003, GECCO.

[4]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[5]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[6]  Frans van den Bergh,et al.  An analysis of particle swarm optimizers , 2002 .

[7]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[8]  Julian F. Miller,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.

[9]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[10]  Sanghamitra Bandyopadhyay,et al.  Multi-Objective Particle Swarm Optimization with time variant inertia and acceleration coefficients , 2007, Inf. Sci..

[11]  Kalyanmoy Deb,et al.  Optimization for Engineering Design: Algorithms and Examples , 2004 .

[12]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[13]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[14]  Sanghamitra Bandyopadhyay,et al.  A Multi-objective Genetic Algorithm with Relative Distance: Method, Performance Measures and Constraint Handling , 2007, 2007 International Conference on Computing: Theory and Applications (ICCTA'07).

[15]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.

[16]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[17]  S. Pal,et al.  Adaptive Multi-objective Particle Swarm Optimization Algorithm , 2007 .

[18]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[19]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[20]  Gunar E. Liepins,et al.  Some Guidelines for Genetic Algorithms with Penalty Functions , 1989, ICGA.

[21]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[22]  Aggelos Kiayias,et al.  Polynomial Reconstruction Based Cryptography , 2001, Selected Areas in Cryptography.

[23]  Jonathan E. Fieldsend,et al.  A MOPSO Algorithm Based Exclusively on Pareto Dominance Concepts , 2005, EMO.

[24]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[25]  Marco Laumanns,et al.  Scalable test problems for evolutionary multi-objective optimization , 2001 .

[26]  Sanghamitra Bandyopadhyay,et al.  Adaptive mufti-objective particle swarm optimization algorithm , 2007, 2007 IEEE Congress on Evolutionary Computation.

[27]  Andries Petrus Engelbrecht,et al.  A study of particle swarm optimization particle trajectories , 2006, Inf. Sci..

[28]  Jürgen Teich,et al.  Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[29]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[30]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[31]  Jonathan E. Fieldsend,et al.  A Multi-Objective Algorithm based upon Particle Swarm Optimisation, an Efficient Data Structure and , 2002 .

[32]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .