Temporal properties of inputs to direction-selective neurons in monkey V1.

Motion in the visual scene is processed by direction-selective neurons in primary visual cortex. These cells receive inputs that differ in space and time. What are these inputs? A previous single-unit recording study in anesthetized monkey V1 proposed that the two major streams arising in the primate retina, the M and P pathways, differed in space and time as required to create direction selectivity. We confirmed that cortical cells driven by P inputs tend to have sustained responses. The M pathway, however, as assessed by recordings in layer 4Calpha and from cells with high contrast sensitivity, is not purely transient. The diversity of timing in the M stream suggests that combinations of M inputs, as well as of M and P inputs, create direction selectivity.

[1]  Joel Pokorny,et al.  Responses to pulses and sinusoids in macaque ganglion cells , 1994, Vision Research.

[2]  A. L. Humphrey,et al.  Evidence of input from lagged cells in the lateral geniculate nucleus to simple cells in cortical area 17 of the cat. , 1992, Journal of neurophysiology.

[3]  R. Freeman,et al.  The Derivation of Direction Selectivity in the Striate Cortex , 2004, The Journal of Neuroscience.

[4]  A. L. Humphrey,et al.  Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. , 1990, Journal of neurophysiology.

[5]  L. Palmer,et al.  Contribution of linear mechanisms to the specification of local motion by simple cells in areas 17 and 18 of the cat , 1994, Visual Neuroscience.

[6]  A. L. Humphrey,et al.  Temporal-frequency tuning of direction selectivity in cat visual cortex , 1992, Visual Neuroscience.

[7]  Frances S. Chance,et al.  Synaptic Depression and the Temporal Response Characteristics of V1 Cells , 1998, The Journal of Neuroscience.

[8]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[9]  D N Mastronarde,et al.  Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties. , 1987, Journal of neurophysiology.

[10]  Moshe Gur,et al.  Cerebral Cortex doi:10.1093/cercor/bhi003 Orientation and Direction Selectivity of Neurons in V1 of Alert Monkeys: Functional Relationships and Laminar Distributions , 2022 .

[11]  A. J. Parker,et al.  Contrast sensitivity and orientation selectivity in lamina IV of the striate cortex of Old World monkeys , 1984, Experimental Brain Research.

[12]  P. Schiller,et al.  Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. , 1978, Journal of neurophysiology.

[13]  G. Orban,et al.  Model circuit of spiking neurons generating directional selectivity in simple cells. , 1996, Journal of neurophysiology.

[14]  D. Tolhurst,et al.  Factors influencing the temporal phase of response to bar and grating stimuli for simple cells in the cat striate cortex , 2004, Experimental Brain Research.

[15]  J. Lund,et al.  Anatomical substrates for functional columns in macaque monkey primary visual cortex. , 2003, Cerebral cortex.

[16]  A. Decherney,et al.  Turn, Turn, Turn , 1987, Diabetes Care.

[17]  S. Sherman,et al.  X- and Y-cells in the dorsal lateral geniculate nucleus of the owl monkey (Aotus trivirgatus) , 1976, Science.

[18]  Russell L. De Valois,et al.  PII: S0042-6989(00)00210-8 , 2000 .

[19]  R. Shapley,et al.  Dynamics of Orientation Selectivity in the Primary Visual Cortex and the Importance of Cortical Inhibition , 2003, Neuron.

[20]  D. Hubel,et al.  Laminar and columnar distribution of geniculo‐cortical fibers in the macaque monkey , 1972, The Journal of comparative neurology.

[21]  V. Casagrande,et al.  The connections of layer 4 subdivisions in the primary visual cortex (V1) of the owl monkey. , 2000, Cerebral cortex.

[22]  A. L. Humphrey,et al.  The Emergence of Direction Selectivity in Cat Primary Visual Cortex , 2002 .

[23]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[24]  C. Blakemore,et al.  Organization and post‐natal development of the monkey's lateral geniculate nucleus. , 1986, The Journal of physiology.

[25]  D. Snodderly,et al.  Spatial organization of receptive fields of V1 neurons of alert monkeys: comparison with responses to gratings. , 2002, Journal of neurophysiology.

[26]  A. Peters,et al.  The cat primary visual cortex , 2002 .

[27]  G. DeAngelis,et al.  Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. , 1997, Journal of neurophysiology.

[28]  R. Shapley,et al.  Linear mechanisms of directional selectivity in simple cells of cat striate cortex. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[29]  R. Clay Reid,et al.  Integration of Thalamic Inputs to Cat Primary Visual Cortex , 2002 .

[30]  A L Humphrey,et al.  Laminar differences in the spatiotemporal structure of simple cell receptive fields in cat area 17 , 1997, Visual Neuroscience.

[31]  C. Koch,et al.  Modeling direction selectivity of simple cells in striate visual cortex within the framework of the canonical microcircuit , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  J. B. Levitt,et al.  Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys. , 2001, Journal of neurophysiology.

[33]  E. Callaway,et al.  Convergence of magno- and parvocellular pathways in layer 4B of macaque primary visual cortex , 1996, Nature.

[34]  R. Reid,et al.  Rules of Connectivity between Geniculate Cells and Simple Cells in Cat Primary Visual Cortex , 2001, The Journal of Neuroscience.

[35]  D N Mastronarde,et al.  Two classes of single-input X-cells in cat lateral geniculate nucleus. I. Receptive-field properties and classification of cells. , 1987, Journal of neurophysiology.

[36]  G. Blasdel,et al.  Termination of afferent axons in macaque striate cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  G. Blasdel,et al.  Physiological organization of layer 4 in macaque striate cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  L. Kontsevich The nature of the inputs to cortical motion detectors , 1995, Vision Research.

[39]  M. Ogren,et al.  The neurological organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in old world and new world primates , 1978, The Journal of comparative neurology.

[40]  DH Hubel,et al.  Color and contrast sensitivity in the lateral geniculate body and primary visual cortex of the macaque monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  R. Shapley,et al.  X and Y cells in the lateral geniculate nucleus of macaque monkeys. , 1982, The Journal of physiology.

[42]  R. Reid,et al.  Receptive field structure varies with layer in the primary visual cortex , 2005, Nature Neuroscience.

[43]  A. Saul Adaptation aftereffects in single neurons of cat visual cortex: Response timing is retarded by adapting , 1995, Visual Neuroscience.

[44]  L. Palmer,et al.  Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of cat , 1989, Vision Research.

[45]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial summation. , 1993, Journal of neurophysiology.

[46]  J. Kaas,et al.  The identification of relay neurons in the dorsal lateral geniculate nucleus of monkeys using horseradish peroxidase , 1978, The Journal of comparative neurology.

[47]  Nicholas J. Priebe,et al.  Direction Selectivity of Excitation and Inhibition in Simple Cells of the Cat Primary Visual Cortex , 2005, Neuron.

[48]  E. Callaway,et al.  Two Functional Channels from Primary Visual Cortex to Dorsal Visual Cortical Areas , 2001, Science.

[49]  R C Reid,et al.  Visual physiology of the lateral geniculate nucleus in two species of New World monkey: Saimiri sciureus and Aotus trivirgatis , 2000, The Journal of physiology.

[50]  P. D. Spear,et al.  Effects of aging on the primate visual system: spatial and temporal processing by lateral geniculate neurons in young adult and old rhesus monkeys. , 1994, Journal of neurophysiology.

[51]  D. Ferster,et al.  Direction selectivity of synaptic potentials in simple cells of the cat visual cortex. , 1997, Journal of neurophysiology.

[52]  M. Wong-Riley,et al.  Quantitative light- and electron-microscopic analysis of cytochrome-oxidase distribution in neurons of the lateral geniculate nucleus of the adult monkey , 1990, Visual Neuroscience.

[53]  J. B. Levitt,et al.  A model for the depth-dependence of receptive field size and contrast sensitivity of cells in layer 4C of macaque striate cortex , 1999, Vision Research.

[54]  Bevil R. Conway,et al.  Space-time maps and two-bar interactions of different classes of direction-selective cells in macaque V-1. , 2003, Journal of neurophysiology.

[55]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[56]  D. G. Albrecht,et al.  Motion selectivity and the contrast-response function of simple cells in the visual cortex , 1991, Visual Neuroscience.

[57]  R. W. Rodieck,et al.  Identification, classification and anatomical segregation of cells with X‐like and Y‐like properties in the lateral geniculate nucleus of old‐world primates. , 1976, The Journal of physiology.

[58]  M. Livingstone,et al.  Mechanisms of Direction Selectivity in Macaque V1 , 1998, Neuron.

[59]  R. Marrocco,et al.  Sustained and transient cells in monkey lateral geniculate nucleus: conduction velocites and response properties. , 1976, Journal of neurophysiology.

[60]  John H. R. Maunsell,et al.  Visual response latencies in striate cortex of the macaque monkey. , 1992, Journal of neurophysiology.

[61]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. III. Color , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  A B Saul,et al.  Visual cortical simple cells: Who inhibits whom , 1999, Visual Neuroscience.

[63]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[64]  J. Bullier,et al.  Visual latencies in areas V1 and V2 of the macaque monkey , 1995, Visual Neuroscience.