Statistical Principles in Image Modeling

Images of natural scenes contain a rich variety of visual patterns. To learn and recognize these patterns from natural images, it is necessary to construct statistical models for these patterns. In this review article we describe three statistical principles for modeling image patterns: the sparse coding principle, the minimax entropy principle, and the meaningful alignment principle. We explain these three principles and their relationships in the context of modeling images as compositions of Gabor wavelets. These three principles correspond to three regimes of composition patterns of Gabor wavelets, and these three regimes are connected by changes in scale or resolution.

[1]  Song-Chun Zhu,et al.  What are Textons? , 2005, International Journal of Computer Vision.

[2]  Song-Chun Zhu,et al.  Visual learning by integrating descriptive and generative methods , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[3]  Lionel Moisan,et al.  Meaningful Alignments , 2000, International Journal of Computer Vision.

[4]  Bruno A. Olshausen,et al.  PROBABILISTIC FRAMEWORK FOR THE ADAPTATION AND COMPARISON OF IMAGE CODES , 1999 .

[5]  Anuj Srivastava,et al.  Universal Analytical Forms for Modeling Image Probabilities , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  K. Jarrod Millman,et al.  Learning Sparse Codes with a Mixture-of-Gaussians Prior , 1999, NIPS.

[8]  Eero P. Simoncelli,et al.  A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients , 2000, International Journal of Computer Vision.

[9]  Xiaoming Huo,et al.  JBEAM: multiscale curve coding via beamlets , 2005, IEEE Transactions on Image Processing.

[10]  William Bialek,et al.  Statistics of Natural Images: Scaling in the Woods , 1993, NIPS.

[11]  Michael I. Miller,et al.  REPRESENTATIONS OF KNOWLEDGE IN COMPLEX SYSTEMS , 1994 .

[12]  Tai Sing Lee,et al.  Image Representation Using 2D Gabor Wavelets , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  D. Mumford Pattern theory: a unifying perspective , 1996 .

[14]  E. Candès,et al.  Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .

[15]  Song-Chun Zhu,et al.  Exploring Texture Ensembles by Efficient Markov Chain Monte Carlo-Toward a 'Trichromacy' Theory of Texture , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[17]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[18]  Tomaso Poggio,et al.  Intracellular measurements of spatial integration and the MAX operation in complex cells of the cat primary visual cortex. , 2004, Journal of neurophysiology.

[19]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[20]  Song-Chun Zhu,et al.  Analysis and synthesis of textured motion: particles and waves , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Song-Chun Zhu,et al.  Statistical Modeling of Texture Sketch , 2002, ECCV.

[22]  Dennis F. Dunn,et al.  Optimal Gabor filters for texture segmentation , 1995, IEEE Trans. Image Process..

[23]  Jitendra Malik,et al.  Detecting and localizing edges composed of steps, peaks and roofs , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[24]  Song-Chun Zhu,et al.  Modeling Visual Patterns by Integrating Descriptive and Generative Methods , 2004, International Journal of Computer Vision.

[25]  Michael Jenkin,et al.  Using Complex Gabor Filters To Detect and Localize Edges and Bars , 1992, Advances in Machine Vision.

[26]  Tony Lindeberg,et al.  Effective Scale: A Natural Unit for Measuring Scale-Space Lifetime , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Nicolai Petkov,et al.  Computational models of visual neurons specialised in the detection of periodic and aperiodic oriented visual stimuli: bar and grating cells , 1997, Biological Cybernetics.

[28]  Stefano Soatto,et al.  Dynamic Textures , 2003, International Journal of Computer Vision.

[29]  James R. Bergen,et al.  Pyramid-based texture analysis/synthesis , 1995, Proceedings., International Conference on Image Processing.

[30]  Song-Chun Zhu,et al.  Towards a mathematical theory of primal sketch and sketchability , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[31]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[32]  R A Young,et al.  The Gaussian derivative model for spatial vision: I. Retinal mechanisms. , 1988, Spatial vision.

[33]  Eero P. Simoncelli,et al.  On Advances in Statistical Modeling of Natural Images , 2004, Journal of Mathematical Imaging and Vision.

[34]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[35]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[36]  Song-Chun Zhu,et al.  Primal sketch: Integrating structure and texture , 2007, Comput. Vis. Image Underst..

[37]  Eero P. Simoncelli,et al.  Image compression via joint statistical characterization in the wavelet domain , 1999, IEEE Trans. Image Process..

[38]  Timothy F. Cootes,et al.  Active Appearance Models , 1998, ECCV.

[39]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[40]  E. George,et al.  APPROACHES FOR BAYESIAN VARIABLE SELECTION , 1997 .

[41]  Yali Amit,et al.  Shape Quantization and Recognition with Randomized Trees , 1997, Neural Computation.

[42]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[43]  Zhuowen Tu,et al.  Image Parsing: Unifying Segmentation, Detection, and Recognition , 2005, International Journal of Computer Vision.

[44]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[45]  Stéphane Mallat,et al.  Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  John D. Lafferty,et al.  Inducing Features of Random Fields , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  Song-Chun Zhu,et al.  Perceptual Scale-Space and Its Applications , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[48]  Edward H. Adelson,et al.  Shiftable multiscale transforms , 1992, IEEE Trans. Inf. Theory.

[49]  Song-Chun Zhu,et al.  Minimax Entropy Principle and Its Application to Texture Modeling , 1997, Neural Computation.

[50]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[51]  D. Steinberg,et al.  Technometrics , 2008 .

[52]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[53]  Peter Kovesi,et al.  Image Features from Phase Congruency , 1995 .

[54]  B. Julesz Textons, the elements of texture perception, and their interactions , 1981, Nature.

[55]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[57]  Song-Chun Zhu,et al.  Equivalence of Julesz Ensembles and FRAME Models , 2000, International Journal of Computer Vision.

[58]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[59]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[60]  仁科 喜久子,et al.  コーパスを利用した副詞の分析:-For a Composition System- , 2005 .

[61]  Arthur E. C. Pece,et al.  The Problem of Sparse Image Coding , 2002, Journal of Mathematical Imaging and Vision.

[62]  D. Burr,et al.  Mach bands are phase dependent , 1986, Nature.

[63]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[64]  S. Klinke,et al.  Exploratory Projection Pursuit , 1995 .

[65]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[66]  Paul A. Viola,et al.  A Non-Parametric Multi-Scale Statistical Model for Natural Images , 1997, NIPS.

[67]  Harry Shum,et al.  Image segmentation by data driven Markov chain Monte Carlo , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[68]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[69]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[70]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..