The Effect of Stress on Battery-Electrode Capacity

[1]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  W. Marsden I and J , 2012 .

[3]  Yi Cui,et al.  Size-dependent fracture of Si nanowire battery anodes , 2011 .

[4]  Daniel P. Abraham,et al.  Stress Evolution in Lithium-ion Composite Electrodes during Electrochemical Cycling and Resulting Internal Pressures on the Cell Casing , 2015, 1511.02445.

[5]  A. Hayashi,et al.  Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery , 2013, Scientific Reports.

[6]  W. Craig Carter,et al.  Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries , 2005 .

[7]  Ann Marie Sastry,et al.  Fracture Analysis of the Cathode in Li-Ion Batteries: A Simulation Study , 2012 .

[8]  Venkat Srinivasan,et al.  In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation , 2010, 1108.0647.

[9]  Hui Wu,et al.  Engineering empty space between Si nanoparticles for lithium-ion battery anodes. , 2012, Nano letters.

[10]  Robert W. Balluffi,et al.  Kinetics of Materials: Balluffi/Kinetics , 2005 .

[11]  Y. Chiang,et al.  Formulation of the coupled electrochemical–mechanical boundary-value problem, with applications to transport of multiple charged species , 2016 .

[12]  J. Dahn,et al.  Isotropic Volume Expansion of Particles of Amorphous Metallic Alloys in Composite Negative Electrodes for Li-Ion Batteries , 2007 .

[13]  Claus Daniel,et al.  A study of lithium ion intercalation induced fracture of silicon particles used as anode material in Li-ion battery , 2011 .

[14]  A. Hayashi,et al.  Evaluation of elastic modulus of Li2S–P2S5 glassy solid electrolyte by ultrasonic sound velocity measurement and compression test , 2013 .

[15]  Jiayan Luo,et al.  Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes. , 2012, The journal of physical chemistry letters.

[16]  Robert W. Balluffi,et al.  Kinetics Of Materials , 2005 .

[17]  J. Sakamoto,et al.  Mechanical properties of the solid Li-ion conducting electrolyte: Li0.33La0.57TiO3 , 2012, Journal of Materials Science.

[18]  Long Cai,et al.  Simulation and Analysis of Stress in a Li-Ion Battery with a Blended LiMn 2 O 4 and LiNi 0.8 Co 0.15 Al 0.05 O 2 Cathode , 2014 .

[19]  Xu Guo,et al.  A chemo-mechanical model of lithiation in silicon , 2014 .

[20]  Tomasz Wierzbicki,et al.  Characterization of plasticity and fracture of shell casing of lithium-ion cylindrical battery , 2015 .

[21]  Miaofang Chi,et al.  Solid Electrolyte: the Key for High‐Voltage Lithium Batteries , 2015 .

[22]  Stephen J. Harris,et al.  In Situ Observation of Strains during Lithiation of a Graphite Electrode , 2010 .

[23]  Amartya Mukhopadhyay,et al.  Deformation and stress in electrode materials for Li-ion batteries , 2014 .

[24]  R. Sauer,et al.  The Eshelby Tensors in a Finite Spherical Domain—Part I: Theoretical Formulations , 2007 .

[25]  Christian Miehe,et al.  A phase‐field model for chemo‐mechanical induced fracture in lithium‐ion battery electrode particles , 2016 .

[26]  B. Yildiz “Stretching” the energy landscape of oxides—Effects on electrocatalysis and diffusion , 2014 .

[27]  Shuru Chen,et al.  Silicon core-hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries. , 2012, Physical chemistry chemical physics : PCCP.

[28]  J. Sakamoto,et al.  Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet , 2012, Journal of Materials Science.

[29]  Alex Bates,et al.  A review of lithium and non-lithium based solid state batteries , 2015 .

[30]  Yue Qi,et al.  Threefold Increase in the Young’s Modulus of Graphite Negative Electrode during Lithium Intercalation , 2010 .

[31]  Ralph E. White,et al.  Effect of Porosity on the Capacity Fade of a Lithium-Ion Battery Theory , 2004 .

[32]  Doron Aurbach,et al.  Capacity fading of lithiated graphite electrodes studied by a combination of electroanalytical methods, Raman spectroscopy and SEM , 2005 .

[33]  Rajlakshmi Purkayastha,et al.  An integrated 2-D model of a lithium ion battery: the effect of material parameters and morphology on storage particle stress , 2012 .

[34]  M. Verbrugge,et al.  Stress Distribution within Spherical Particles Undergoing Electrochemical Insertion and Extraction , 2008 .

[35]  J. Cahn,et al.  A linear theory of thermochemical equilibrium of solids under stress , 1973 .

[36]  Huajian Gao,et al.  Microscopic model for fracture of crystalline Si nanopillars during lithiation , 2014 .

[37]  A. Pesaran,et al.  A representative-sandwich model for simultaneously coupled mechanical-electrical-thermal simulation of a lithium-ion cell under quasi-static indentation tests , 2015 .

[38]  Allan F. Bower,et al.  A simple finite element model of diffusion, finite deformation, plasticity and fracture in lithium ion insertion electrode materials , 2012 .

[39]  Lars Greve,et al.  Mechanical testing and macro-mechanical finite element simulation of the deformation, fracture, and short circuit initiation of cylindrical Lithium ion battery cells , 2012 .

[40]  Ann Marie Sastry,et al.  Mesoscale Modeling of a Li-Ion Polymer Cell , 2007 .

[41]  Klaus Hackl,et al.  The influence of particle size and spacing on the fragmentation of nanocomposite anodes for Li batteries , 2012 .

[42]  Xingcheng Xiao,et al.  Stress Contributions to Solution Thermodynamics in Li-Si Alloys , 2012 .

[43]  Jorgen Selsing,et al.  Internal Stresses in Ceramics , 1961 .

[44]  Chang-Hui Lee,et al.  Cell safety analysis of a molten sodium–sulfur battery under failure mode from a fracture in the solid electrolyte , 2015 .

[45]  Thomas A. Yersak,et al.  A Highly Reversible Nano‐Si Anode Enabled by Mechanical Confinement in an Electrochemically Activated LixTi4Ni4Si7 Matrix , 2012 .

[46]  Dirk Uwe Sauer,et al.  Modeling mechanical degradation in lithium ion batteries during cycling: Solid electrolyte interphase fracture , 2015 .

[47]  P. Kumta,et al.  Effect of silicon configurations on the mechanical integrity of silicon–carbon nanotube heterostructured anode for lithium ion battery: A computational study , 2016 .

[48]  Allan F. Bower,et al.  Measurement and modeling of the mechanical and electrochemical response of amorphous Si thin film electrodes during cyclic lithiation , 2013, 1311.5844.

[49]  Yan Wang,et al.  Failure modes of hollow core–shell structural active materials during the lithiation–delithiation process , 2015 .

[50]  D. Fang,et al.  Reducing diffusion-induced stresses of electrode–collector bilayer in lithium-ion battery by pre-strain , 2013 .

[51]  W. Craig Carter,et al.  “Electrochemical Shock” of Intercalation Electrodes: A Fracture Mechanics Analysis , 2010 .

[52]  Yoshitaka Tateyama,et al.  Recent Progress in Interfacial Nanoarchitectonics in Solid-State Batteries , 2015, Journal of Inorganic and Organometallic Polymers and Materials.

[53]  Kevin W. Eberman,et al.  Colossal Reversible Volume Changes in Lithium Alloys , 2001 .

[54]  Dass,et al.  Pressure-dependent self-diffusion and activation volume in solids: Sodium. , 1994, Physical review. B, Condensed matter.

[55]  Piercarlo Mustarelli,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.

[56]  Vincent Chevrier,et al.  First Principles Model of Amorphous Silicon Lithiation , 2009 .

[57]  Moses O. Tadé,et al.  Advances in Cathode Materials for Solid Oxide Fuel Cells: Complex Oxides without Alkaline Earth Metal Elements , 2015 .

[58]  J. P. Dempsey,et al.  Stable crack growth in nanostructured Li-batteries , 2005 .

[59]  Yong Xia,et al.  Damage of cells and battery packs due to ground impact , 2014 .

[60]  William H. Woodford,et al.  Electrochemical shock : mechanical degradation of ion-intercalation materials , 2013 .

[61]  Fred Roozeboom,et al.  High Energy Density All‐Solid‐State Batteries: A Challenging Concept Towards 3D Integration , 2008 .

[62]  John Newman,et al.  Stress generation and fracture in lithium insertion materials , 2005 .

[63]  M. Biener,et al.  Enhanced lithiation and fracture behavior of silicon mesoscale pillars via atomic layer coatings and geometry design , 2014 .

[64]  S. Xia,et al.  Cracking mechanisms in lithiated silicon thin film electrodes , 2014 .

[65]  Tanmay K. Bhandakkar,et al.  Cohesive modeling of crack nucleation under diffusion induced stresses in a thin strip: Implications on the critical size for flaw tolerant battery electrodes , 2010 .

[66]  Chao Zhang,et al.  Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse , 2015 .

[67]  Ruijuan Xiao,et al.  Investigation of crack patterns and cyclic performance of Ti–Si nanocomposite thin film anodes for lithium ion batteries , 2012 .

[68]  Analysis of Electrochemical Lithiation and Delithiation Kinetics in Silicon , 2012, 1201.1428.

[69]  Seungjun Lee,et al.  Debonding at the interface between active particles and PVDF binder in Li-ion batteries , 2016 .

[70]  A. Drozdov Constitutive equations for self-limiting lithiation of electrode nanoparticles in Li-ion batteries , 2014 .

[71]  Hyun-Wook Lee,et al.  A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. , 2014, Nature nanotechnology.

[72]  Thomas A. Yersak,et al.  Effect of Compressive Stress on Electrochemical Performance of Silicon Anodes , 2013 .

[73]  Venkataraman Thangadurai,et al.  Garnet-Type Solid-State Fast Li Ion Conductors for Li Batteries: Critical Review , 2014 .

[74]  Kazunori Takada,et al.  Progress and prospective of solid-state lithium batteries , 2013 .

[75]  Craig B. Arnold,et al.  On the coupling between stress and voltage in lithium-ion pouch cells , 2014, Sensing Technologies + Applications.

[76]  R. Koksbang,et al.  Rechargeable lithium battery anodes: alternatives to metallic lithium , 1993 .

[77]  A. Hayashi,et al.  Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries , 2013 .

[78]  Sangtae Kim,et al.  Electrochemically driven mechanical energy harvesting , 2016, Nature Communications.

[79]  Zhigang Suo,et al.  Variation of stress with charging rate due to strain-rate sensitivity of silicon electrodes of Li-ion batteries , 2014 .

[80]  Kurt Maute,et al.  Numerical modeling of electrochemical-mechanical interactions in lithium polymer batteries , 2009 .

[81]  John W. Cahn,et al.  Thermochemical equilibrium of multiphase solids under stress , 1978 .

[82]  Hui Wu,et al.  A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. , 2012, Nano letters.

[83]  S. Hackney,et al.  Mechanical stability for nanostructured Sn- and Si-based anodes , 2011 .