Dynamics of Orientation Selectivity in the Primary Visual Cortex and the Importance of Cortical Inhibition

[1]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[2]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[3]  K. Mardia Statistics of Directional Data , 1972 .

[4]  A. Sillito The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. , 1975, The Journal of physiology.

[5]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. II. Orientation specificity and ocular dominance. , 1976, Journal of neurophysiology.

[6]  L. Palmer,et al.  Receptive-field structure in cat striate cortex. , 1981, Journal of neurophysiology.

[7]  R. L. Valois,et al.  The orientation and direction selectivity of cells in macaque visual cortex , 1982, Vision Research.

[8]  J. Lund,et al.  Anatomical organization of macaque monkey striate visual cortex. , 1988, Annual review of neuroscience.

[9]  D. Ferster Spatially opponent excitation and inhibition in simple cells of the cat visual cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  A. B. Bonds Role of Inhibition in the Specification of Orientation Selectivity of Cells in the Cat Striate Cortex , 1989, Visual Neuroscience.

[11]  D. Whitteridge,et al.  Arborisation pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey , 1989, The Journal of comparative neurology.

[12]  R. Douglas,et al.  A functional microcircuit for cat visual cortex. , 1991, The Journal of physiology.

[13]  M. Stryker,et al.  Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  D. Ferster The synaptic inputs to simple cells of the cat visual cortex. , 1992, Progress in brain research.

[15]  M. Stryker,et al.  Development of orientation selectivity in ferret visual cortex and effects of deprivation , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  R. V. Novikova,et al.  Dynamics of orientation tuning in the cat striate cortex neurons , 1993, Neuroscience.

[17]  S. Nelson,et al.  Orientation selectivity of cortical neurons during intracellular blockade of inhibition. , 1994, Science.

[18]  R. Shapley Linearity and non-linearity in cortical receptive fields. , 1994, Ciba Foundation symposium.

[19]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[20]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[21]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[23]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[24]  H. Tamura,et al.  Mechanisms underlying orientation selectivity of neurons in the primary visual cortex of the macaque. , 1996, The Journal of physiology.

[25]  R. Shapley,et al.  New perspectives on the mechanisms for orientation selectivity , 1997, Current Opinion in Neurobiology.

[26]  Dario L. Ringach,et al.  Dynamics of orientation tuning in macaque primary visual cortex , 1997, Nature.

[27]  Guillermo Sapiro,et al.  A subspace reverse-correlation technique for the study of visual neurons , 1997, Vision Research.

[28]  D. Ferster,et al.  Strength and Orientation Tuning of the Thalamic Input to Simple Cells Revealed by Electrically Evoked Cortical Suppression , 1998, Neuron.

[29]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[30]  Nicholas J. Priebe,et al.  Contrast-Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning and Correlation-Based Intracortical Connectivity , 1998, The Journal of Neuroscience.

[31]  U. Eysel,et al.  Evidence for a contribution of lateral inhibition to orientation tuning and direction selectivity in cat visual cortex: reversible inactivation of functionally characterized sites combined with neuroanatomical tracing techniques , 1998, The European journal of neuroscience.

[32]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[33]  J. B. Levitt,et al.  A model for the intracortical origin of orientation preference and tuning in macaque striate cortex , 1999, Visual Neuroscience.

[34]  A. Grinvald,et al.  Linking spontaneous activity of single cortical neurons and the underlying functional architecture. , 1999, Science.

[35]  J. DiCarlo,et al.  Spatial and Temporal Structure of Receptive Fields in Primate Somatosensory Area 3b: Effects of Stimulus Scanning Direction and Orientation , 2000, The Journal of Neuroscience.

[36]  M. Carandini,et al.  Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. , 2000, Journal of neurophysiology.

[37]  R. Shapley,et al.  A neuronal network model of macaque primary visual cortex (V1): orientation selectivity and dynamics in the input layer 4Calpha. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  M. Carandini,et al.  Membrane Potential and Firing Rate in Cat Primary Visual Cortex , 2000, The Journal of Neuroscience.

[39]  M. Sur,et al.  Adaptation-Induced Plasticity of Orientation Tuning in Adult Visual Cortex , 2000, Neuron.

[40]  D. Ferster,et al.  Dynamics of the orientation-tuned membrane potential response in cat primary visual cortex , 2001, Nature Neuroscience.

[41]  Michael Shelley,et al.  How Simple Cells Are Made in a Nonlinear Network Model of the Visual Cortex , 2001, The Journal of Neuroscience.

[42]  P. H. Schiller,et al.  Spatial frequency and orientation tuning dynamics in area V1 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[43]  R. Shapley,et al.  Suppression of neural responses to nonoptimal stimuli correlates with tuning selectivity in macaque V1. , 2002, Journal of neurophysiology.

[44]  R. Shapley,et al.  Orientation Selectivity in Macaque V1: Diversity and Laminar Dependence , 2002, The Journal of Neuroscience.

[45]  A. Grinvald,et al.  Dynamics and Constancy in Cortical Spatiotemporal Patterns of Orientation Processing , 2002, Science.

[46]  Lyle J. Graham,et al.  Orientation and Direction Selectivity of Synaptic Inputs in Visual Cortical Neurons A Diversity of Combinations Produces Spike Tuning , 2003, Neuron.

[47]  Dario L. Ringach,et al.  Role of Global and Tuned Suppression Dynamics of Orientation Tuning in Macaque V 1 : The , 2003 .

[48]  K. Martin Faculty Opinions recommendation of Orientation and direction selectivity of synaptic inputs in visual cortical neurons: a diversity of combinations produces spike tuning. , 2003 .

[49]  D. Tolhurst,et al.  The effects of contrast on the linearity of spatial summation of simple cells in the cat's striate cortex , 2004, Experimental Brain Research.

[50]  David McLaughlin,et al.  Coarse-Grained Reduction and Analysis of a Network Model of Cortical Response: I. Drifting Grating Stimuli , 2002, Journal of Computational Neuroscience.

[51]  A. B. Bonds,et al.  Dynamic differentiation of GABAA-sensitive influences on orientation selectivity of complex cells in the cat striate cortex , 2004, Experimental Brain Research.

[52]  David McLaughlin,et al.  States of High Conductance in a Large-Scale Model of the Visual Cortex , 2002, Journal of Computational Neuroscience.