Striatal circuits for reward learning and decision-making

The striatum is essential for learning which actions lead to reward and for implementing those actions. Decades of experimental and theoretical work have led to several influential theories and hypotheses about how the striatal circuit mediates these functions. However, owing to technical limitations, testing these hypotheses rigorously has been difficult. In this Review, we briefly describe some of the classic ideas of striatal function. We then review recent studies in rodents that take advantage of optical and genetic methods to test these classic ideas by recording and manipulating identified cell types within the circuit. This new body of work has provided experimental support of some longstanding ideas about the striatal circuit and has uncovered critical aspects of the classic view that are incorrect or incomplete.The striatum is crucial for learning and decision-making. Cox and Witten provide an updated overview of the roles of different parts of the striatal circuit in learning and decision-making, showing how recent experiments support and contradict previous models.

[1]  Kazuto Kobayashi,et al.  Enhanced flexibility of place discrimination learning by targeting striatal cholinergic interneurons , 2014, Nature Communications.

[2]  P. Calabresi,et al.  Direct and indirect pathways of basal ganglia: a critical reappraisal , 2014, Nature Neuroscience.

[3]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[4]  K. Doya,et al.  Representation of Action-Specific Reward Values in the Striatum , 2005, Science.

[5]  K. Campbell,et al.  A neural correlate of response bias in monkey caudate nucleus , 2022 .

[6]  Aaron C. Koralek,et al.  Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills , 2012, Nature.

[7]  Alexxai V. Kravitz,et al.  Coordinated Ramping of Dorsal Striatal Pathways preceding Food Approach and Consumption , 2018, The Journal of Neuroscience.

[8]  J. Penney,et al.  The functional anatomy of basal ganglia disorders , 1989, Trends in Neurosciences.

[9]  Brian E. Keck A Critical Reappraisal , 2010 .

[10]  C. Gerfen,et al.  GENSAT BAC Cre-Recombinase Driver Lines to Study the Functional Organization of Cerebral Cortical and Basal Ganglia Circuits , 2013, Neuron.

[11]  Ashesh K Dhawale,et al.  Motor Cortex Is Required for Learning but Not for Executing a Motor Skill , 2015, Neuron.

[12]  G. Schoenbaum,et al.  Neural Encoding in Ventral Striatum during Olfactory Discrimination Learning , 2003, Neuron.

[13]  Anne G E Collins,et al.  Opponent actor learning (OpAL): modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive. , 2014, Psychological review.

[14]  B. Sabatini,et al.  Midbrain dopamine neurons sustain inhibitory transmission using plasma membrane uptake of GABA, not synthesis , 2014, eLife.

[15]  A. D. Smith,et al.  Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy , 1984, Neuroscience.

[16]  仁 井之川,et al.  Juxtacellular labeling of tonically active neurons and phasically active neurons in the rat striatum , 2010 .

[17]  S. Lammel,et al.  Unique Properties of Mesoprefrontal Neurons within a Dual Mesocorticolimbic Dopamine System , 2008, Neuron.

[18]  Justin K. O’Hare,et al.  Pathway-Specific Striatal Substrates for Habitual Behavior , 2016, Neuron.

[19]  Ian R. Wickersham,et al.  A Circuit Mechanism for Differentiating Positive and Negative Associations , 2015, Nature.

[20]  Qiaojie Xiong,et al.  Medial geniculate body and primary auditory cortex differentially contribute to striatal sound representations , 2019, Nature Communications.

[21]  Vaughn L. Hetrick,et al.  Mesolimbic Dopamine Signals the Value of Work , 2015, Nature Neuroscience.

[22]  Eric Teboul,et al.  Accumbens dopamine D2 receptors increase motivation by decreasing inhibitory transmission to the ventral pallidum , 2018, Nature Communications.

[23]  K. Deisseroth,et al.  Phasic Firing in Dopaminergic Neurons Is Sufficient for Behavioral Conditioning , 2009, Science.

[24]  Eugenio Culurciello,et al.  Spatially Compact Neural Clusters in the Dorsal Striatum Encode Locomotion Relevant Information , 2016, Neuron.

[25]  O. Hikosaka,et al.  Two types of dopamine neuron distinctly convey positive and negative motivational signals , 2009, Nature.

[26]  Wing-Ho Yung,et al.  Dopamine receptors mediate strategy abandoning via modulation of a specific prelimbic cortex–nucleus accumbens pathway in mice , 2018, Proceedings of the National Academy of Sciences.

[27]  Tianyi Mao,et al.  A comprehensive excitatory input map of the striatum reveals novel functional organization , 2016, eLife.

[28]  Susana Q. Lima,et al.  Complementary Contributions of Striatal Projection Pathways to Action Initiation and Execution , 2016, Cell.

[29]  G. E. Alexander,et al.  Parallel organization of functionally segregated circuits linking basal ganglia and cortex. , 1986, Annual review of neuroscience.

[30]  K. Berridge,et al.  Optogenetic self-stimulation in the nucleus accumbens: D1 reward versus D2 ambivalence , 2018, PloS one.

[31]  J. Deniau,et al.  Disinhibition as a basic process in the expression of striatal functions , 1990, Trends in Neurosciences.

[32]  C. Gerfen,et al.  Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridization histochemistry and fluorescent retrograde tracing study , 1988, Brain Research.

[33]  Eran Stark,et al.  Novel GABAergic circuits mediate the reinforcement-related signals of striatal cholinergic interneurons , 2011, Nature Neuroscience.

[34]  Joshua L. Jones,et al.  Dopamine transients are sufficient and necessary for acquisition of model-based associations , 2017, Nature Neuroscience.

[35]  Anatol C. Kreitzer,et al.  Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry , 2010, Nature.

[36]  A David Redish,et al.  Altering gain of the infralimbic-to-accumbens shell circuit alters economically dissociable decision-making algorithms , 2018, Proceedings of the National Academy of Sciences.

[37]  A. Graybiel,et al.  Responses of tonically active neurons in the primate's striatum undergo systematic changes during behavioral sensorimotor conditioning , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  N. Uchida,et al.  Opposite initialization to novel cues in dopamine signaling in ventral and posterior striatum in mice , 2016, eLife.

[39]  Ilana B. Witten,et al.  Reward prediction error does not explain movement selectivity in DMS-projecting dopamine neurons , 2018, bioRxiv.

[40]  A. Graybiel,et al.  A Corticostriatal Path Targeting Striosomes Controls Decision-Making under Conflict , 2015, Cell.

[41]  Joshua D. Berke,et al.  Functional Properties of Striatal Fast-Spiking Interneurons , 2011, Front. Syst. Neurosci..

[42]  J. Kerr,et al.  Dopamine Receptor Activation Is Required for Corticostriatal Spike-Timing-Dependent Plasticity , 2008, The Journal of Neuroscience.

[43]  J. Hollerman,et al.  Dopamine neurons report an error in the temporal prediction of reward during learning , 1998, Nature Neuroscience.

[44]  Ilana B. Witten,et al.  Cholinergic Interneurons Control Local Circuit Activity and Cocaine Conditioning , 2010, Science.

[45]  S. Thompson,et al.  Reward behavior is regulated by the strength of hippocampus-nucleus accumbens synapses , 2018, Nature.

[46]  J. O'Doherty,et al.  Contributions of the striatum to learning, motivation, and performance: an associative account , 2012, Trends in Cognitive Sciences.

[47]  CATHERINE O. HEBB,et al.  Gradient of Cholinesterase Activity and of Choline Acetylase Activity in Nerve Fibres : Gradient of Choline Acetylase Activity , 1961, Nature.

[48]  P. Dayan,et al.  Goals and Habits in the Brain , 2013, Neuron.

[49]  Chengbo Meng,et al.  Spectrally Resolved Fiber Photometry for Multi-component Analysis of Brain Circuits , 2018, Neuron.

[50]  Henry H Yin,et al.  Striatonigral control of movement velocity in mice , 2016, The European journal of neuroscience.

[51]  J. Pillow,et al.  Combined social and spatial coding in a descending projection from the prefrontal cortex , 2017, bioRxiv.

[52]  M. Roitman,et al.  Nucleus Accumbens Neurons Are Innately Tuned for Rewarding and Aversive Taste Stimuli, Encode Their Predictors, and Are Linked to Motor Output , 2005, Neuron.

[53]  G. E. Alexander,et al.  Functional architecture of basal ganglia circuits: neural substrates of parallel processing , 1990, Trends in Neurosciences.

[54]  James M. Otis,et al.  Prefrontal cortex output circuits guide reward seeking through divergent cue encoding , 2017, Nature.

[55]  B. Balleine,et al.  The role of the dorsomedial striatum in instrumental conditioning , 2005, The European journal of neuroscience.

[56]  Alexxai V. Kravitz,et al.  A competitive model for striatal action selection , 2019, Brain Research.

[57]  C. Soares-Cunha,et al.  Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation , 2016, Nature Communications.

[58]  Stefano Zucca,et al.  Role of Striatal Cholinergic Interneurons in Set-Shifting in the Rat , 2015, The Journal of Neuroscience.

[59]  Charles R. Gerfen,et al.  Targeting Cre Recombinase to Specific Neuron Populations with Bacterial Artificial Chromosome Constructs , 2007, The Journal of Neuroscience.

[60]  H. Bergman,et al.  Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease , 2010, Nature Reviews Neuroscience.

[61]  Michael J. Frank,et al.  By Carrot or by Stick: Cognitive Reinforcement Learning in Parkinsonism , 2004, Science.

[62]  John N. J. Reynolds,et al.  Dopamine-dependent plasticity of corticostriatal synapses , 2002, Neural Networks.

[63]  P. Apicella The role of the intrinsic cholinergic system of the striatum: What have we learned from TAN recordings in behaving animals? , 2017, Neuroscience.

[64]  E. Vaadia,et al.  Midbrain Dopaminergic Neurons and Striatal Cholinergic Interneurons Encode the Difference between Reward and Aversive Events at Different Epochs of Probabilistic Classical Conditioning Trials , 2008, The Journal of Neuroscience.

[65]  A. Graybiel,et al.  Differential Dynamics of Activity Changes in Dorsolateral and Dorsomedial Striatal Loops during Learning , 2010, Neuron.

[66]  A. Graybiel Habits, rituals, and the evaluative brain. , 2008, Annual review of neuroscience.

[67]  D. Kooy,et al.  Organization of the striatum: Collateralization of its Efferent Axons , 1985, Brain Research.

[68]  B. Balleine,et al.  Human and Rodent Homologies in Action Control: Corticostriatal Determinants of Goal-Directed and Habitual Action , 2010, Neuropsychopharmacology.

[69]  Eric A. Yttri,et al.  Opponent and bidirectional control of movement velocity in the basal ganglia , 2016, Nature.

[70]  Christopher H. Donahue,et al.  Distinct value encoding in striatal direct and indirect pathways during adaptive learning , 2018, bioRxiv.

[71]  Ilana B. Witten,et al.  Specialized coding of sensory, motor, and cognitive variables in VTA dopamine neurons , 2019, Nature.

[72]  P. Deyn,et al.  The Lateralized Linguistic Cerebellum: A Review and a New Hypothesis , 2001, Brain and Language.

[73]  H. Moore,et al.  Dopamine D2 Receptors Regulate the Anatomical and Functional Balance of Basal Ganglia Circuitry , 2014, Neuron.

[74]  D. Lovinger,et al.  Selective activation of cholinergic interneurons enhances accumbal phasic dopamine release: setting the tone for reward processing. , 2012, Cell reports.

[75]  Benjamin T. Saunders,et al.  Dopamine neurons create Pavlovian conditioned stimuli with circuit-defined motivational properties , 2018, Nature Neuroscience.

[76]  C. Gerfen,et al.  Activation of Striatal Neurons Causes a Perceptual Decision Bias during Visual Change Detection in Mice , 2018, Neuron.

[77]  R. Wightman,et al.  Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens , 2007, Nature Neuroscience.

[78]  Ilana B. Witten,et al.  Recombinase-Driver Rat Lines: Tools, Techniques, and Optogenetic Application to Dopamine-Mediated Reinforcement , 2011, Neuron.

[79]  Nicholas N. Foster,et al.  The mouse cortico-striatal projectome , 2016, Nature Neuroscience.

[80]  Anne E Carpenter,et al.  Neuron-type specific signals for reward and punishment in the ventral tegmental area , 2011, Nature.

[81]  Kuei Yuan Tseng,et al.  Handbook of basal ganglia structure and function , 2010 .

[82]  Naoshige Uchida,et al.  Erratum: Arithmetic and local circuitry underlying dopamine prediction errors , 2015, Nature.

[83]  W. Schultz,et al.  Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli , 1996, Nature.

[84]  A. G. Carter,et al.  Cocaine exposure reorganizes cell type– and input-specific connectivity in the nucleus accumbens , 2014, Nature Neuroscience.

[85]  L. Paninski,et al.  The Spatiotemporal Organization of the Striatum Encodes Action Space , 2017, Neuron.

[86]  C. Lüscher,et al.  Contrasting forms of cocaine-evoked plasticity control components of relapse , 2014, Nature.

[87]  Josiah R. Boivin,et al.  A Causal Link Between Prediction Errors, Dopamine Neurons and Learning , 2013, Nature Neuroscience.

[88]  P. Greengard,et al.  Dichotomous Dopaminergic Control of Striatal Synaptic Plasticity , 2008, Science.

[89]  R. Wightman,et al.  Dopamine’s Effects on Corticostriatal Synapses during Reward-Based Behaviors , 2018, Neuron.

[90]  A M Graybiel,et al.  The basal ganglia and adaptive motor control. , 1994, Science.

[91]  Benjamin F. Grewe,et al.  Diametric neural ensemble dynamics in parkinsonian and dyskinetic states , 2018, Nature.

[92]  Bernard W. Balleine,et al.  The Bilateral Prefronto-striatal Pathway Is Necessary for Learning New Goal-Directed Actions , 2018, Current Biology.

[93]  J. Tepper,et al.  GABAergic Interneurons of the Striatum , 2016 .

[94]  Sabrina Ravel,et al.  Tonically active neurons in the monkey striatum do not preferentially respond to appetitive stimuli , 1999, Experimental Brain Research.

[95]  J. Obeso,et al.  Functional neuroanatomy of the basal ganglia. , 2012, Cold Spring Harbor perspectives in medicine.

[96]  P. Glimcher,et al.  Value Representations in the Primate Striatum during Matching Behavior , 2008, Neuron.

[97]  W. Nauta,et al.  Efferent connections of the substantia nigra and ventral tegmental area in the rat , 1979, Brain Research.

[98]  K. Miyazaki,et al.  Nucleus accumbens , 2018, Radiopaedia.org.

[99]  H. Yin,et al.  The role of the basal ganglia in habit formation , 2006, Nature Reviews Neuroscience.

[100]  R. Wise Forebrain substrates of reward and motivation , 2005, The Journal of comparative neurology.

[101]  J. Reynolds,et al.  Spontaneous firing and evoked pauses in the tonically active cholinergic interneurons of the striatum , 2011, Neuroscience.

[102]  Sachie K. Ogawa,et al.  Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass , 2015, eLife.

[103]  Alice M Stamatakis,et al.  Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. , 2011, Nature.

[104]  Anatol C. Kreitzer,et al.  Striatal Cholinergic Interneurons Drive GABA Release from Dopamine Terminals , 2014, Neuron.

[105]  Karl J. Friston,et al.  Dissociable Roles of Ventral and Dorsal Striatum in Instrumental Conditioning , 2004, Science.

[106]  Min Whan Jung,et al.  Differential coding of reward and movement information in the dorsomedial striatal direct and indirect pathways , 2017, Nature Communications.

[107]  H. Groenewegen,et al.  Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat , 1992, The Journal of comparative neurology.

[108]  Ling Fu,et al.  Whole-Brain Mapping of Inputs to Projection Neurons and Cholinergic Interneurons in the Dorsal Striatum , 2015, PloS one.

[109]  Y. Isomura,et al.  Reward-Modulated Motor Information in Identified Striatum Neurons , 2013, The Journal of Neuroscience.

[110]  S. T. Kitai,et al.  Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[111]  H. G. Rotstein,et al.  Striatal Local Circuitry: A New Framework for Lateral Inhibition , 2017, Neuron.

[112]  Xin Jin,et al.  Basal Ganglia Subcircuits Distinctively Encode the Parsing and Concatenation of Action Sequences , 2014, Nature Neuroscience.

[113]  N. Uchida,et al.  Dopamine neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli , 2018, Nature Neuroscience.

[114]  Ilya E. Monosov,et al.  What and Where Information in the Caudate Tail Guides Saccades to Visual Objects , 2012, The Journal of Neuroscience.

[115]  Alexander B. Johnson,et al.  Ventral tegmental area glutamate neurons co-release GABA and promote positive reinforcement , 2016, Nature Communications.

[116]  K. Deisseroth,et al.  Striatal Dopamine Release Is Triggered by Synchronized Activity in Cholinergic Interneurons , 2012, Neuron.

[117]  Karl Deisseroth,et al.  Excitatory transmission at thalamo–striatal synapses mediates susceptibility to social stress , 2015, Nature Neuroscience.

[118]  L. Swanson,et al.  The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat , 1982, Brain Research Bulletin.

[119]  C. Gerfen,et al.  Modulation of striatal projection systems by dopamine. , 2011, Annual review of neuroscience.

[120]  R. Wise,et al.  Pimozide-induced extinction of intracranial self-stimulation: response patterns rule out motor or performance deficits , 1976, Brain Research.

[121]  J. Wickens,et al.  A cellular mechanism of reward-related learning , 2001, Nature.

[122]  Talia N. Lerner,et al.  Nucleus accumbens D2R cells signal prior outcomes and control risky decision-making , 2016, Nature.

[123]  Ilana B. Witten,et al.  Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target , 2016, Nature Neuroscience.

[124]  K. Gurney,et al.  The nucleus accumbens as a nexus between values and goals in goal-directed behavior: a review and a new hypothesis , 2013, Front. Behav. Neurosci..

[125]  Talia N. Lerner,et al.  Intact-Brain Analyses Reveal Distinct Information Carried by SNc Dopamine Subcircuits , 2015, Cell.

[126]  M. Delong,et al.  Primate models of movement disorders of basal ganglia origin , 1990, Trends in Neurosciences.

[127]  M. Ungless,et al.  Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli , 2009, Proceedings of the National Academy of Sciences.

[128]  F. Tecuapetla,et al.  The Thalamostriatal Projections Contribute to the Initiation and Execution of a Sequence of Movements , 2018, Neuron.

[129]  F. C. Macintosh,et al.  The distribution of acetylcholine in the peripheral and the central nervous system , 1941, The Journal of physiology.

[130]  J. Reynolds,et al.  Visual-Induced Excitation Leads to Firing Pauses in Striatal Cholinergic Interneurons , 2011, The Journal of Neuroscience.

[131]  D. Lovinger,et al.  Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill , 2009, Nature Neuroscience.

[132]  Matthew R Bailey,et al.  Decreasing Striatopallidal Pathway Function Enhances Motivation by Energizing the Initiation of Goal-Directed Action , 2016, The Journal of Neuroscience.

[133]  Steven S. Vogel,et al.  Concurrent Activation of Striatal Direct and Indirect Pathways During Action Initiation , 2013, Nature.

[134]  Liqun Luo,et al.  Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping , 2015, Cell.

[135]  A. Graybiel,et al.  Effect of the nigrostriatal dopamine system on acquired neural responses in the striatum of behaving monkeys. , 1994, Science.

[136]  R. Costa,et al.  Direct and indirect dorsolateral striatum pathways reinforce different action strategies , 2016, Current Biology.

[137]  Laura A. Bradfield,et al.  The Thalamostriatal Pathway and Cholinergic Control of Goal-Directed Action: Interlacing New with Existing Learning in the Striatum , 2013, Neuron.

[138]  Scott W. Linderman,et al.  The Striatum Organizes 3D Behavior via Moment-to-Moment Action Selection , 2018, Cell.

[139]  O. Hikosaka,et al.  Role of the basal ganglia in the control of purposive saccadic eye movements. , 2000, Physiological reviews.

[140]  J. Mink THE BASAL GANGLIA: FOCUSED SELECTION AND INHIBITION OF COMPETING MOTOR PROGRAMS , 1996, Progress in Neurobiology.

[141]  Anatol C. Kreitzer,et al.  Distinct roles for direct and indirect pathway striatal neurons in reinforcement , 2012, Nature Neuroscience.

[142]  Karl Deisseroth,et al.  Molecular and Circuit-Dynamical Identification of Top-Down Neural Mechanisms for Restraint of Reward Seeking , 2017, Cell.

[143]  Hyoung F. Kim,et al.  Indirect Pathway of Caudal Basal Ganglia for Rejection of Valueless Visual Objects , 2017, Neuron.

[144]  P. Dayan,et al.  A framework for mesencephalic dopamine systems based on predictive Hebbian learning , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[145]  Shinya Yamamoto,et al.  Reward Value-Contingent Changes of Visual Responses in the Primate Caudate Tail Associated with a Visuomotor Skill , 2013, The Journal of Neuroscience.

[146]  David M. Lovinger,et al.  Parallel, but Dissociable, Processing in Discrete Corticostriatal Inputs Encodes Skill Learning , 2017, Neuron.

[147]  Dheeraj S. Roy,et al.  Ventral CA1 neurons store social memory , 2016, Science.

[148]  Murtaza Z Mogri,et al.  Cell Type–Specific Loss of BDNF Signaling Mimics Optogenetic Control of Cocaine Reward , 2010, Science.

[149]  Guillem R. Esber,et al.  Brief optogenetic inhibition of dopamine neurons mimics endogenous negative reward prediction errors , 2015, Nature Neuroscience.

[150]  D. Surmeier,et al.  D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons , 2007, Trends in Neurosciences.

[151]  A. Graybiel,et al.  Prolonged Dopamine Signalling in Striatum Signals Proximity and Value of Distant Rewards , 2013, Nature.

[152]  Timothy D. Hanks,et al.  Causal contribution and dynamical encoding in the striatum during evidence accumulation , 2018, bioRxiv.

[153]  Hao Li,et al.  Optogenetic Editing Reveals the Hierarchical Organization of Learned Action Sequences , 2018, Cell.

[154]  Joseph W. Barter,et al.  Beyond reward prediction errors: the role of dopamine in movement kinematics , 2015, Front. Integr. Neurosci..

[155]  J. Girault,et al.  Spatial distribution of D1R- and D2R-expressing medium-sized spiny neurons differs along the rostro-caudal axis of the mouse dorsal striatum , 2013, Front. Neural Circuits.

[156]  R. Wise,et al.  Synaptic and Behavioral Profile of Multiple Glutamatergic Inputs to the Nucleus Accumbens , 2012, Neuron.

[157]  J. Rajkowski,et al.  Tonically discharging putamen neurons exhibit set-dependent responses. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[158]  C. Gerfen,et al.  D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. , 1990, Science.

[159]  K. Deisseroth,et al.  Optogenetic Interrogation of Dopaminergic Modulation of the Multiple Phases of Reward-Seeking Behavior , 2011, The Journal of Neuroscience.

[160]  C. Petersen,et al.  Cell-Type-Specific Sensorimotor Processing in Striatal Projection Neurons during Goal-Directed Behavior , 2015, Neuron.

[161]  R. Costa,et al.  Dopamine neuron activity before action initiation gates and invigorates future movements , 2018, Nature.

[162]  Karl Deisseroth,et al.  Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches , 2018, Nature Neuroscience.

[163]  Kae Nakamura,et al.  Predictive Reward Signal of Dopamine Neurons , 2015 .

[164]  Anatol C. Kreitzer,et al.  Reassessing models of basal ganglia function and dysfunction. , 2014, Annual review of neuroscience.

[165]  Masahiko Watanabe,et al.  Monitoring and Updating of Action Selection for Goal-Directed Behavior through the Striatal Direct and Indirect Pathways , 2018, Neuron.

[166]  Robert C. Malenka,et al.  Input- and Output-Specific Regulation of Serial Order Performance by Corticostriatal Circuits , 2015, Neuron.

[167]  Suzanne N. Haber,et al.  Circuit-Based Corticostriatal Homologies Between Rat and Primate , 2016, Biological Psychiatry.

[168]  Yingjie Zhu,et al.  A thalamic input to the nucleus accumbens mediates opiate dependence , 2016, Nature.

[169]  L. Wilbrecht,et al.  Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value , 2012, Nature Neuroscience.

[170]  C O HEBB,et al.  Gradient of choline acetylase activity. , 1961, Nature.

[171]  Robert C. Liu,et al.  Dynamic corticostriatal activity biases social bonding in monogamous female prairie voles , 2017, Nature.

[172]  A. Zador,et al.  Corticostriatal neurones in auditory cortex drive decisions during auditory discrimination , 2013, Nature.

[173]  R. J. McDonald,et al.  Context, emotion, and the strategic pursuit of goals: interactions among multiple brain systems controlling motivated behavior , 2012, Front. Behav. Neurosci..

[174]  A. Graybiel,et al.  Chronic Stress Alters Striosome-Circuit Dynamics, Leading to Aberrant Decision-Making , 2017, Cell.

[175]  B. Balleine,et al.  The Role of the Dorsal Striatum in Reward and Decision-Making , 2007, The Journal of Neuroscience.

[176]  P. Goldman-Rakic,et al.  Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[177]  R. Wise,et al.  Intracranial self-stimulation in relation to the ascending dopaminergic systems of the midbrain: A moveable electrode mapping study , 1980, Brain Research.

[178]  M. Hasselmo The role of acetylcholine in learning and memory , 2006, Current Opinion in Neurobiology.

[179]  Joel Finkelstein,et al.  Linking Cholinergic Interneurons, Synaptic Plasticity, and Behavior during the Extinction of a Cocaine-Context Association , 2016, Neuron.

[180]  A. Zador,et al.  Selective corticostriatal plasticity during acquisition of an auditory discrimination task , 2014, Nature.

[181]  H. Groenewegen,et al.  The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization. , 1990, Progress in brain research.

[182]  S. Ikemoto,et al.  Similar Roles of Substantia Nigra and Ventral Tegmental Dopamine Neurons in Reward and Aversion , 2014, The Journal of Neuroscience.

[183]  Praneeth Namburi,et al.  Divergent Routing of Positive and Negative Information from the Amygdala during Memory Retrieval , 2016, Neuron.

[184]  Ethan S. Bromberg-Martin,et al.  Dopamine in Motivational Control: Rewarding, Aversive, and Alerting , 2010, Neuron.

[185]  A. Parent,et al.  The organization of the striatal output system: a single-cell juxtacellular labeling study in the rat , 2000, Neuroscience Research.

[186]  Anatol C. Kreitzer,et al.  Differential Innervation of Direct- and Indirect-Pathway Striatal Projection Neurons , 2013, Neuron.

[187]  Bernard W. Balleine,et al.  Aging-Related Dysfunction of Striatal Cholinergic Interneurons Produces Conflict in Action Selection , 2016, Neuron.

[188]  Z. Mainen,et al.  Balanced activity in basal ganglia projection pathways is critical for contraversive movements , 2014, Nature Communications.

[189]  J. Gold,et al.  Caudate Encodes Multiple Computations for Perceptual Decisions , 2010, The Journal of Neuroscience.

[190]  W. Schultz,et al.  Discrete Coding of Reward Probability and Uncertainty by Dopamine Neurons , 2003, Science.

[191]  Anatol C. Kreitzer,et al.  Cell-Type-Specific Control of Brainstem Locomotor Circuits by Basal Ganglia , 2016, Cell.

[192]  David A. Lewis,et al.  Implications for Parkinson ' s Disease , 2022 .

[193]  C. Fiorillo,et al.  Optogenetic Mimicry of the Transient Activation of Dopamine Neurons by Natural Reward Is Sufficient for Operant Reinforcement , 2012, PloS one.

[194]  Bernardo L Sabatini,et al.  Antagonistic but Not Symmetric Regulation of Primary Motor Cortex by Basal Ganglia Direct and Indirect Pathways. , 2015, Neuron.

[195]  B. Balleine,et al.  From learning to action: the integration of dorsal striatal input and output pathways in instrumental conditioning , 2018, The European journal of neuroscience.

[196]  Tianyi Mao,et al.  Inputs to the Dorsal Striatum of the Mouse Reflect the Parallel Circuit Architecture of the Forebrain , 2010, Front. Neuroanat..

[197]  Anatol C. Kreitzer,et al.  Control of Basal Ganglia Output by Direct and Indirect Pathway Projection Neurons , 2013, The Journal of Neuroscience.

[198]  A. Graybiel,et al.  Corticostriatal transformations in the primate somatosensory system. Projections from physiologically mapped body-part representations. , 1991, Journal of neurophysiology.

[199]  H. Groenewegen,et al.  Convergence and Segregation of Ventral Striatal Inputs and Outputs , 1999, Annals of the New York Academy of Sciences.

[200]  M. Howe,et al.  Rapid signaling in distinct dopaminergic axons during locomotion and reward , 2016, Nature.

[201]  Sachie K. Ogawa,et al.  Whole-Brain Mapping of Direct Inputs to Midbrain Dopamine Neurons , 2012, Neuron.

[202]  Daniel S. McGehee,et al.  Striatal cholinergic interneuron regulation and circuit effects , 2014, Front. Synaptic Neurosci..

[203]  M. Roesch,et al.  Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards , 2007, Nature Neuroscience.

[204]  Hyoung F. Kim,et al.  Distinct Basal Ganglia Circuits Controlling Behaviors Guided by Flexible and Stable Values , 2013, Neuron.

[205]  A. Graybiel,et al.  Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories , 2005, Nature.

[206]  Kelly R. Tan,et al.  Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning , 2012, Nature.

[207]  James L Olds Self-Stimulation of the Brain , 1958, Science.

[208]  Anne L. Collins,et al.  Nucleus Accumbens Cholinergic Interneurons Oppose Cue-Motivated Behavior , 2019, Biological Psychiatry.

[209]  Mohamady El-Gaby,et al.  A Hippocampus-Accumbens Tripartite Neuronal Motif Guides Appetitive Memory in Space , 2019, Cell.

[210]  P. Glimcher,et al.  JOURNAL OF THE EXPERIMENTAL ANALYSIS OF BEHAVIOR 2005, 84, 555–579 NUMBER 3(NOVEMBER) DYNAMIC RESPONSE-BY-RESPONSE MODELS OF MATCHING BEHAVIOR IN RHESUS MONKEYS , 2022 .

[211]  C. Wilson,et al.  Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.