A comprehensive survey on machine learning for networking: evolution, applications and research opportunities

Machine Learning (ML) has been enjoying an unprecedented surge in applications that solve problems and enable automation in diverse domains. Primarily, this is due to the explosion in the availability of data, significant improvements in ML techniques, and advancement in computing capabilities. Undoubtedly, ML has been applied to various mundane and complex problems arising in network operation and management. There are various surveys on ML for specific areas in networking or for specific network technologies. This survey is original, since it jointly presents the application of diverse ML techniques in various key areas of networking across different network technologies. In this way, readers will benefit from a comprehensive discussion on the different learning paradigms and ML techniques applied to fundamental problems in networking, including traffic prediction, routing and classification, congestion control, resource and fault management, QoS and QoE management, and network security. Furthermore, this survey delineates the limitations, give insights, research challenges and future opportunities to advance ML in networking. Therefore, this is a timely contribution of the implications of ML for networking, that is pushing the barriers of autonomic network operation and management.

[1]  Ajith Abraham,et al.  Intrusion Detection Using Ensemble of Soft Computing Paradigms , 2003 .

[2]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[3]  Adam Krzyżak,et al.  Methods of combining multiple classifiers and their applications to handwriting recognition , 1992, IEEE Trans. Syst. Man Cybern..

[4]  Dario Rossi,et al.  KISS: Stochastic Packet Inspection Classifier for UDP Traffic , 2010, IEEE/ACM Transactions on Networking.

[5]  Satoru Miyano,et al.  Open source clustering software , 2004 .

[6]  Moshe Zukerman,et al.  Neuron PID: A Robust AQM Scheme , 2006 .

[7]  Edmund S. Yu,et al.  Traffic prediction using neural networks , 1993, Proceedings of GLOBECOM '93. IEEE Global Telecommunications Conference.

[8]  Patrick D. McDaniel,et al.  Cleverhans V0.1: an Adversarial Machine Learning Library , 2016, ArXiv.

[9]  Ajith Abraham,et al.  Modeling intrusion detection system using hybrid intelligent systems , 2007, J. Netw. Comput. Appl..

[10]  Adrien-Marie Legendre,et al.  Nouvelles méthodes pour la détermination des orbites des comètes , 1970 .

[11]  Luís Bernardo,et al.  Machine Learning in Software Defined Networks: Data collection and traffic classification , 2016, 2016 IEEE 24th International Conference on Network Protocols (ICNP).

[12]  Michalis Faloutsos,et al.  Is P2P dying or just hiding? [P2P traffic measurement] , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[13]  B. Erickson,et al.  Machine Learning for Medical Imaging. , 2017, Radiographics : a review publication of the Radiological Society of North America, Inc.

[14]  Hajime Inoue,et al.  Comparing Anomaly Detection Techniques for HTTP , 2007, RAID.

[15]  Mo Adda,et al.  Fault Classification System for Computer Networks Using Fuzzy Probabilistic Neural Network Classifier (FPNNC) , 2014, EANN.

[16]  Sally Floyd,et al.  TCP Selective Acknowledgement Options , 1996 .

[17]  Jia Zhang,et al.  MDP and Machine Learning-Based Cost-Optimization of Dynamic Resource Allocation for Network Function Virtualization , 2015, 2015 IEEE International Conference on Services Computing.

[18]  Qingwei Chen,et al.  An adaptive AQM algorithm based on neuron reinforcement learning , 2009, 2009 IEEE International Conference on Control and Automation.

[19]  Robert M. Farber,et al.  How Neural Nets Work , 1987, NIPS.

[20]  Robert E. Schapire,et al.  The strength of weak learnability , 1990, Mach. Learn..

[21]  James S. Albus,et al.  New Approach to Manipulator Control: The Cerebellar Model Articulation Controller (CMAC)1 , 1975 .

[22]  Timothy X. Brown,et al.  Adaptive call admission control under quality of service constraints: a reinforcement learning solution , 2000, IEEE Journal on Selected Areas in Communications.

[23]  Risto Miikkulainen,et al.  On-Line Adaptation of a Signal Predistorter through Dual Reinforcement Learning , 1996, ICML.

[24]  Paul Barford,et al.  A Machine Learning Approach to TCP Throughput Prediction , 2007, IEEE/ACM Transactions on Networking.

[25]  Jorma Laaksonen,et al.  SOM_PAK: The Self-Organizing Map Program Package , 1996 .

[26]  Huiqiang Wang,et al.  Using Hessian Locally Linear Embedding for autonomic failure prediction , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[27]  Christopher Krügel,et al.  Using Decision Trees to Improve Signature-Based Intrusion Detection , 2003, RAID.

[28]  A. Snow,et al.  Assessing dependability of wireless networks using neural networks , 2005, MILCOM 2005 - 2005 IEEE Military Communications Conference.

[29]  Yang Yang,et al.  Reinforcement learning based spectrum-aware routing in multi-hop cognitive radio networks , 2009, 2009 4th International Conference on Cognitive Radio Oriented Wireless Networks and Communications.

[30]  Amin Karami,et al.  ACCPndn: Adaptive Congestion Control Protocol in Named Data Networking by learning capacities using optimized Time-Lagged Feedforward Neural Network , 2015, J. Netw. Comput. Appl..

[31]  Grenville Armitage,et al.  Synthetic sub-flow pairs for timely and stable IP traffic identification , 2006 .

[32]  Andrew H. Sung,et al.  Intrusion detection using neural networks and support vector machines , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).

[33]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[34]  Chuanyi Ji,et al.  Proactive network fault detection , 1997, Proceedings of INFOCOM '97.

[35]  Pierre Geurts,et al.  Enhancement of TCP over wired/wireless networks with packet loss classifiers inferred by supervised learning , 2010, Wirel. Networks.

[36]  Zhitang Chen,et al.  Predicting future traffic using Hidden Markov Models , 2016, 2016 IEEE 24th International Conference on Network Protocols (ICNP).

[37]  Ramesh R. Rao,et al.  Bayesian and neural network schemes for call admission control in LTE systems , 2013, 2013 IEEE Global Communications Conference (GLOBECOM).

[38]  Rafidah Md Noor,et al.  A Generic Quantitative Relationship to Assess Interdependency of QoE and QoS , 2013, KSII Trans. Internet Inf. Syst..

[39]  Ethem Alpaydin,et al.  Introduction to machine learning , 2004, Adaptive computation and machine learning.

[40]  Phurivit Sangkatsanee,et al.  Practical real-time intrusion detection using machine learning approaches , 2011, Comput. Commun..

[41]  Salvatore J. Stolfo,et al.  Anomalous Payload-Based Network Intrusion Detection , 2004, RAID.

[42]  J. Morgan,et al.  Problems in the Analysis of Survey Data, and a Proposal , 1963 .

[43]  Mo Dong,et al.  PCC: Re-architecting Congestion Control for Consistent High Performance , 2014, NSDI.

[44]  David L. Waltz,et al.  Toward memory-based reasoning , 1986, CACM.

[45]  Lingfen Sun,et al.  Content Classification Based on Objective Video Quality Evaluation for MPEG4 Video Streaming over Wireless Networks , 2009 .

[46]  Nitin H. Vaidya,et al.  Distinguishing congestion losses from wireless transmission losses: a negative result , 1998, Proceedings 7th International Conference on Computer Communications and Networks (Cat. No.98EX226).

[47]  João Cesar M. Mota,et al.  Condition monitoring of 3G cellular networks through competitive neural models , 2005, IEEE Transactions on Neural Networks.

[48]  James Cannady,et al.  Artificial Neural Networks for Misuse Detection , 1998 .

[49]  Chunming Qiao,et al.  TCP implementations and false time out detection in OBS networks , 2004, IEEE INFOCOM 2004.

[50]  Abhay Karandikar,et al.  An adaptive prediction based approach for congestion estimation in active queue management (APACE) , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[51]  Curtis Busby-Earle,et al.  Multi-Perspective Machine Learning a Classifier Ensemble Method for Intrusion Detection , 2017, ICMLSC.

[52]  Fabio Roli,et al.  Intrusion detection in computer networks by a modular ensemble of one-class classifiers , 2008, Inf. Fusion.

[53]  Leonid Portnoy,et al.  Intrusion detection with unlabeled data using clustering , 2000 .

[54]  Deborah Estrin,et al.  Directed diffusion for wireless sensor networking , 2003, TNET.

[55]  Stephen D. Bay,et al.  The UCI KDD archive of large data sets for data mining research and experimentation , 2000, SKDD.

[56]  Wei-Yang Lin,et al.  Intrusion detection by machine learning: A review , 2009, Expert Syst. Appl..

[57]  Rajat Raina,et al.  Self-taught learning: transfer learning from unlabeled data , 2007, ICML '07.

[58]  Sebastian Zander,et al.  Automated traffic classification and application identification using machine learning , 2005, The IEEE Conference on Local Computer Networks 30th Anniversary (LCN'05)l.

[59]  Sudarshan Rao Operational Fault Detection in cellular wireless base-stations , 2006, IEEE Transactions on Network and Service Management.

[60]  Donald F. Towsley,et al.  Modeling TCP throughput: a simple model and its empirical validation , 1998, SIGCOMM '98.

[61]  Yang Liu,et al.  Solving the App-Level Classification Problem of P2P Traffic Via Optimized Support Vector Machines , 2006, Sixth International Conference on Intelligent Systems Design and Applications.

[62]  Miguel Rio,et al.  Internet Traffic Forecasting using Neural Networks , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[63]  Bo Yang,et al.  Traffic classification using probabilistic neural networks , 2010, 2010 Sixth International Conference on Natural Computation.

[64]  Jie Wang,et al.  A New Call Admission Control Strategyfor LTE Femtocell Networks , 2013, CSE 2013.

[65]  Paul A. Gagniuc,et al.  Markov Chains: From Theory to Implementation and Experimentation , 2017 .

[66]  Jianguo Ding,et al.  Predictive fault management in the dynamic environment of IP networks , 2004, 2004 IEEE International Workshop on IP Operations and Management.

[67]  Margaret H. Pinson,et al.  A new standardized method for objectively measuring video quality , 2004, IEEE Transactions on Broadcasting.

[68]  Yoshifumi Nishida,et al.  The NewReno Modification to TCP's Fast Recovery Algorithm , 2004, RFC.

[69]  Wei Hu,et al.  AdaBoost-Based Algorithm for Network Intrusion Detection , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[70]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[71]  Sebastian Zander,et al.  Timely and Continuous Machine-Learning-Based Classification for Interactive IP Traffic , 2012, IEEE/ACM Transactions on Networking.

[72]  Wenke Lee,et al.  Polymorphic Blending Attacks , 2006, USENIX Security Symposium.

[73]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[74]  Filip De Turck,et al.  Design and Evaluation of a Self-Learning HTTP Adaptive Video Streaming Client , 2014, IEEE Communications Letters.

[75]  Matthew Mathis,et al.  The macroscopic behavior of the TCP congestion avoidance algorithm , 1997, CCRV.

[76]  Martin May,et al.  Analytic evaluation of RED performance , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[77]  Bernhard Pfahringer,et al.  Winning the KDD99 classification cup: bagged boosting , 2000, SKDD.

[78]  Imran Ali,et al.  Enabling proactive self-healing by data mining network failure logs , 2017 .

[79]  Nasser Sadati,et al.  NN-RED: an AQM mechanism based on neural networks , 2007 .

[80]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[81]  Michalis Faloutsos,et al.  BLINC: multilevel traffic classification in the dark , 2005, SIGCOMM '05.

[82]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[83]  Ali A. Ghorbani,et al.  A detailed analysis of the KDD CUP 99 data set , 2009, 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications.

[84]  Vern Paxson,et al.  Outside the Closed World: On Using Machine Learning for Network Intrusion Detection , 2010, 2010 IEEE Symposium on Security and Privacy.

[85]  Moshe Zukerman,et al.  An Adaptive Neuron AQM for a Stable Internet , 2007, Networking.

[86]  R. C. Messenger,et al.  A Modal Search Technique for Predictive Nominal Scale Multivariate Analysis , 1972 .

[87]  Cannady,et al.  Next Generation Intrusion Detection: Autonomous Reinforcement Learning of Network Attacks , 2000 .

[88]  Karl Andersson,et al.  Multimedia QoE optimized management using prediction and statistical learning , 2010, IEEE Local Computer Network Conference.

[89]  A Saritha,et al.  A system for detecting network intruders in real-time , 2016 .

[90]  QUTdN QeO,et al.  Random early detection gateways for congestion avoidance , 1993, TNET.

[91]  Long-Ji Lin,et al.  Reinforcement learning for robots using neural networks , 1992 .

[92]  Alexander Afanasyev,et al.  journal homepage: www.elsevier.com/locate/comcom , 2022 .

[93]  P. Laplace Théorie analytique des probabilités , 1995 .

[94]  B. Barden Recommendations on queue management and congestion avoidance in the Internet , 1998 .

[95]  Bernd Eggers Nessus Network Auditing , 2016 .

[96]  Ramin Sadre,et al.  The curious case of parallel connections in HTTP/2 , 2016, 2016 12th International Conference on Network and Service Management (CNSM).

[97]  Chung-Ju Chang,et al.  Neural-network connection-admission control for ATM networks , 1997 .

[98]  Qiming He,et al.  Using reinforcement learning for pro-active network fault management , 2000, WCC 2000 - ICCT 2000. 2000 International Conference on Communication Technology Proceedings (Cat. No.00EX420).

[99]  Nicola Baldo,et al.  A Cognitive scheme for Radio Admission Control in LTE systems , 2012, 2012 3rd International Workshop on Cognitive Information Processing (CIP).

[100]  Michele Zorzi,et al.  Cognitive Network Inference through Bayesian Network Analysis , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.

[101]  Mahesan Niranjan,et al.  On-line Q-learning using connectionist systems , 1994 .

[102]  Kumpati S. Narendra,et al.  Learning Automata - A Survey , 1974, IEEE Trans. Syst. Man Cybern..

[103]  Sammy Chan,et al.  A comparative simulation study of TCP/AQM systems for evaluating the potential of neuron-based AQM schemes , 2014, J. Netw. Comput. Appl..

[104]  Shoji Tatsumi,et al.  Q-MAP: a novel multicast routing method in wireless ad hoc networks with multiagent reinforcement learning , 2002, 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering. TENCOM '02. Proceedings..

[105]  Marco Mellia,et al.  Revealing skype traffic: when randomness plays with you , 2007, SIGCOMM 2007.

[106]  Srinivasan Seshan,et al.  Improving TCP/IP performance over wireless networks , 1995, MobiCom '95.

[107]  A. Mellouk,et al.  Empirical study based on machine learning approach to assess the QoS/QoE correlation , 2012, 2012 17th European Conference on Networks and Optical Communications.

[108]  L. Baum,et al.  Statistical Inference for Probabilistic Functions of Finite State Markov Chains , 1966 .

[109]  Fernando Nogueira,et al.  Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning , 2016, J. Mach. Learn. Res..

[110]  Renata Teixeira,et al.  Early application identification , 2006, CoNEXT '06.

[111]  S. S. Masoumzadeh,et al.  Deep Blue: A Fuzzy Q-Learning Enhanced Active Queue Management Scheme , 2009, 2009 International Conference on Adaptive and Intelligent Systems.

[112]  Anirban Mahanti,et al.  Traffic classification using clustering algorithms , 2006, MineNet '06.

[113]  Manfred K. Warmuth,et al.  The weighted majority algorithm , 1989, 30th Annual Symposium on Foundations of Computer Science.

[114]  Kenneth J. Macleish,et al.  Mapping the integration of artificial intelligence into telecommunications , 1988, IEEE J. Sel. Areas Commun..

[115]  Xin Wang,et al.  Machine Learning for Networking: Workflow, Advances and Opportunities , 2017, IEEE Network.

[116]  Jason Bell,et al.  What Is Machine Learning , 2015 .

[117]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[118]  Hui Wang,et al.  A clustering-based method for unsupervised intrusion detections , 2006, Pattern Recognit. Lett..

[119]  Mansoor Alam,et al.  A Deep Learning Approach for Network Intrusion Detection System , 2016, EAI Endorsed Trans. Security Safety.

[120]  Arthur L. Samuel,et al.  Some Studies in Machine Learning Using the Game of Checkers , 1967, IBM J. Res. Dev..

[121]  Michael I. Jordan,et al.  On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes , 2001, NIPS.

[122]  Ethem Alpaydin Introduction to machine learning, 2rd ed , 2014 .

[123]  Thomas Hofmann,et al.  Greedy Layer-Wise Training of Deep Networks , 2007 .

[124]  Atsushi Hiramatsu,et al.  ATM communications network control by neural networks , 1990, IEEE Trans. Neural Networks.

[125]  Pierre Geurts,et al.  A machine learning approach to improve congestion control over wireless computer networks , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).

[126]  Nandamudi L. Vijaykumar,et al.  A new proposal to provide estimation of QoS and QoE over WiMAX networks: An approach based on computational intelligence and discrete-event simulation , 2011, 2011 IEEE Third Latin-American Conference on Communications.

[127]  Joos Vandewalle,et al.  Multi-Valued and Universal Binary Neurons , 2000 .

[128]  Katia Obraczka,et al.  A machine learning framework for TCP round-trip time estimation , 2014, EURASIP J. Wirel. Commun. Netw..

[129]  D. Cox The Regression Analysis of Binary Sequences , 2017 .

[130]  Chunlin Zhang,et al.  Intrusion detection using hierarchical neural networks , 2005, Pattern Recognit. Lett..

[131]  Pierre Geurts,et al.  Improving TCP in Wireless Networks with an Adaptive Machine-Learnt Classifier of Packet Loss Causes , 2005, NETWORKING.

[132]  Keisuke Ishibashi,et al.  Workflow extraction for service operation using multiple unstructured trouble tickets , 2016, NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium.

[133]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[134]  Daniel Kudenko,et al.  Multi-Agent Reinforcement Learning for Intrusion Detection: A case study and evaluation , 2008, ECAI.

[135]  Daoqiang Zhang,et al.  Hybrid neural network and C4.5 for misuse detection , 2003, Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693).

[136]  Manas Ranjan Patra,et al.  A Hybrid Intelligent Approach for Network Intrusion Detection , 2012 .

[137]  Pedro M. Domingos,et al.  The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World , 2015 .

[138]  Yi Sun,et al.  CS2P: Improving Video Bitrate Selection and Adaptation with Data-Driven Throughput Prediction , 2016, SIGCOMM.

[139]  Blaine Nelson,et al.  Can machine learning be secure? , 2006, ASIACCS '06.

[140]  Armando Fox,et al.  Detecting application-level failures in component-based Internet services , 2005, IEEE Transactions on Neural Networks.

[141]  Tarek N. Saadawi,et al.  A Neural Network Controller for Congestion Control in ATM Multiplexers , 1997, Comput. Networks ISDN Syst..

[142]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[143]  Sargur N. Srihari,et al.  Integration of hand-written address interpretation technology into the United States Postal Service Remote Computer Reader system , 1997, Proceedings of the Fourth International Conference on Document Analysis and Recognition.

[144]  K D Wernecke,et al.  A coupling procedure for the discrimination of mixed data. , 1992, Biometrics.

[145]  Hong Liu,et al.  Inter-data-center network traffic prediction with elephant flows , 2016, NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium.

[146]  Aiko M. Hormann,et al.  Programs for Machine Learning. Part I , 1962, Inf. Control..

[147]  Shailesh Kumar and Risto Miikkulainen Dual Reinforcement Q-Routing: An On-Line Adaptive Routing Algorithm , 1997 .

[148]  C. Siva Ram Murthy,et al.  Loss classification in optical burst switching networks using machine learning techniques: improving the performance of TCP , 2008, IEEE Journal on Selected Areas in Communications.

[149]  Shen Pei-ping,et al.  Hybrid Artificial Bee Colony Algorithm and Particle Swarm Search for Global Optimization , 2014 .

[150]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[151]  Karl Johan Åström,et al.  Optimal control of Markov processes with incomplete state information , 1965 .

[152]  C. S. Hood,et al.  Proactive network-fault detection [telecommunications] , 1997 .

[153]  M. Chakraborty,et al.  Study of snort-based IDS , 2010, ICWET.

[154]  Eleazar Eskin,et al.  A GEOMETRIC FRAMEWORK FOR UNSUPERVISED ANOMALY DETECTION: DETECTING INTRUSIONS IN UNLABELED DATA , 2002 .

[155]  R.R. Selmic,et al.  Wireless Sensor Network Modeling Using Modified Recurrent Neural Networks: Application to Fault Detection , 2008, 2007 IEEE International Conference on Networking, Sensing and Control.

[156]  Lingfen Sun,et al.  Content Clustering Based Video Quality Prediction Model for MPEG4 Video Streaming over Wireless Networks , 2009, 2009 IEEE International Conference on Communications.

[157]  Kai Xu,et al.  TCP-Jersey for wireless IP communications , 2004, IEEE Journal on Selected Areas in Communications.

[158]  B. R. Badrinath,et al.  I-TCP: indirect TCP for mobile hosts , 1995, Proceedings of 15th International Conference on Distributed Computing Systems.

[159]  Antonio Liotta,et al.  Unsupervised deep learning for real-time assessment of video streaming services , 2017, Multimedia Tools and Applications.

[160]  Mohamed Faten Zhani,et al.  α_ SNFAQM: an active queue management mechanism using neurofuzzy prediction , 2007, 2007 12th IEEE Symposium on Computers and Communications.

[161]  C. Siva Ram Murthy,et al.  Learning-TCP: a novel learning automata based reliable transport protocol for ad hoc wireless networks , 2005, 2nd International Conference on Broadband Networks, 2005..

[162]  Joos Vandewalle,et al.  Multi-Valued and Universal Binary Neurons: Theory, Learning and Applications , 2012 .

[163]  Andreas Johnsson,et al.  Towards automatic network fault localization in real time using probabilistic inference , 2013, 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM 2013).

[164]  Jilali Antari,et al.  Identification and Prediction of Internet Traffic Using Artificial Neural Networks , 2010, J. Intell. Learn. Syst. Appl..

[165]  Chang Wook Ahn,et al.  QoS provisioning dynamic connection-admission control for multimedia wireless networks using a Hopfield neural network , 2004, IEEE Transactions on Vehicular Technology.

[166]  Michail G. Lagoudakis,et al.  Model-Free Least-Squares Policy Iteration , 2001, NIPS.

[167]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[168]  Andrew W. Moore,et al.  Internet traffic classification using bayesian analysis techniques , 2005, SIGMETRICS '05.

[169]  C. Skourlas,et al.  Admission Control of Video Sessions over Ad Hoc Networks Using Neural Classifiers , 2014, 2014 IEEE Military Communications Conference.

[170]  Injong Rhee,et al.  CUBIC: a new TCP-friendly high-speed TCP variant , 2008, OPSR.

[171]  Yan Luo,et al.  vTC: Machine Learning Based Traffic Classification as a Virtual Network Function , 2016, SDN-NFV@CODASPY.

[172]  Patrick Haffner,et al.  ACAS: automated construction of application signatures , 2005, MineNet '05.

[173]  John N. Tsitsiklis,et al.  Call admission control and routing in integrated services networks using neuro-dynamic programming , 2000, IEEE Journal on Selected Areas in Communications.

[174]  Rafidah Md Noor,et al.  The role of psychophysics laws in quality of experience assessment: a video streaming case study , 2012, ICACCI '12.

[175]  Valeria Vitelli,et al.  Probabilistic preference learning with the Mallows rank model , 2014, J. Mach. Learn. Res..

[176]  Heba F. Eid,et al.  Hybrid Intelligent Intrusion Detection Scheme , 2011 .

[177]  Bryan Ng,et al.  Developing a traffic classification platform for enterprise networks with SDN: Experiences & lessons learned , 2015, 2015 IFIP Networking Conference (IFIP Networking).

[178]  Andries P. Hekstra,et al.  Perceptual evaluation of speech quality (PESQ)-a new method for speech quality assessment of telephone networks and codecs , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[179]  Matthew Roughan,et al.  Class-of-service mapping for QoS: a statistical signature-based approach to IP traffic classification , 2004, IMC '04.

[180]  Michael I. Jordan Serial Order: A Parallel Distributed Processing Approach , 1997 .

[181]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[182]  Hassan Hajji,et al.  Statistical analysis of network traffic for adaptive faults detection , 2005, IEEE Transactions on Neural Networks.

[183]  Martin May,et al.  FLAME: A Flow-Level Anomaly Modeling Engine , 2008, CSET.

[184]  M. Zorzi,et al.  Learning and Adaptation in Cognitive Radios Using Neural Networks , 2008, 2008 5th IEEE Consumer Communications and Networking Conference.

[185]  Li Guo,et al.  An active learning based TCM-KNN algorithm for supervised network intrusion detection , 2007, Comput. Secur..

[186]  Vincenzo Suraci,et al.  An approximate dynamic programming approach to resource management in multi-cloud scenarios , 2017, Int. J. Control.

[187]  Mario Marchese,et al.  Support Vector Machine Meets Software Defined Networking in IDS Domain , 2017, 2017 29th International Teletraffic Congress (ITC 29).

[188]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[189]  Nicola Baldo,et al.  User-driven Call Admission Control for VoIP over WLAN with a Neural Network based cognitive engine , 2010, 2010 2nd International Workshop on Cognitive Information Processing.

[190]  Ibrahim Matta,et al.  Model-based Loss Inference by TCP over Heterogeneous Networks , 2004 .

[191]  Michalis Faloutsos,et al.  Comparison of Internet Traffic Classification Tools , 2007 .

[192]  Andrew H. Sung,et al.  Monitoring System Security Using Neural Networks and Support Vector Machines , 2001, HIS.

[193]  Yong Wang,et al.  Predicting link quality using supervised learning in wireless sensor networks , 2007, MOCO.

[194]  J. Friedman Stochastic gradient boosting , 2002 .

[195]  Geoffrey E. Hinton Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.

[196]  Katia Obraczka,et al.  Smart Congestion Control for Delay- and Disruption Tolerant Networks , 2016, 2016 13th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON).

[197]  Richard Demo Souza,et al.  A Survey of Machine Learning Techniques Applied to Self-Organizing Cellular Networks , 2017, IEEE Communications Surveys & Tutorials.

[198]  Josep Mangues-Bafalluy,et al.  EXTREME: combining the ease of management of multi-user experimental facilities and the flexibility of proof of concept testbeds , 2006, 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities, 2006. TRIDENTCOM 2006..

[199]  T. Kohonen Self-organized formation of topographically correct feature maps , 1982 .

[200]  Jean-Marie Bonnin,et al.  QoE-Aware Admission Control for Multimedia Applications in IEEE 802.11 Wireless Networks , 2008, 2008 IEEE 68th Vehicular Technology Conference.

[201]  Hui Xiong,et al.  An efficient SVM-based method for multi-class network traffic classification , 2011, 30th IEEE International Performance Computing and Communications Conference.

[202]  C.-C. Jay Kuo,et al.  Internet Traffic Classification for Scalable QOS Provision , 2006, 2006 IEEE International Conference on Multimedia and Expo.

[203]  Michael L. Littman,et al.  A Distributed Reinforcement Learning Scheme for Network Routing , 1993 .

[204]  Arthur S. Goldberger Econometric computing by hand , 2004 .

[205]  Abbas Javed,et al.  Critical Analysis of Learning Algorithms in Random Neural Network Based Cognitive Engine for LTE Systems , 2015, 2015 IEEE 81st Vehicular Technology Conference (VTC Spring).

[206]  Philippe Owezarski,et al.  Design and Deployment of a Passive Monitoring Infrastructure , 2001, IWDC.

[207]  Jitender S. Deogun,et al.  TCP Congestion Avoidance Algorithm Identification , 2011, ICDCS 2011.

[208]  Eric A. Brewer,et al.  Pinpoint: problem determination in large, dynamic Internet services , 2002, Proceedings International Conference on Dependable Systems and Networks.

[209]  Jimmy J. Lin,et al.  Data-Intensive Question Answering , 2001, TREC.

[210]  Carlo Caini,et al.  TCP Hybla: a TCP enhancement for heterogeneous networks , 2004, Int. J. Satell. Commun. Netw..

[211]  Carey L. Williamson,et al.  Offline/realtime traffic classification using semi-supervised learning , 2007, Perform. Evaluation.

[212]  Marc'Aurelio Ranzato,et al.  Efficient Learning of Sparse Representations with an Energy-Based Model , 2006, NIPS.

[213]  Rina Dechter,et al.  Learning While Searching in Constraint-Satisfaction-Problems , 1986, AAAI.

[214]  Luca Salgarelli,et al.  Support Vector Machines for TCP traffic classification , 2009, Comput. Networks.

[215]  Mihaela van der Schaar,et al.  Autonomic and Distributed Joint Routing and Power Control for Delay-Sensitive Applications in Multi-Hop Wireless Networks , 2011, IEEE Transactions on Wireless Communications.

[216]  Carsten Griwodz,et al.  Video streaming using a location-based bandwidth-lookup service for bitrate planning , 2012, TOMCCAP.

[217]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[218]  J. Erman,et al.  QRP05-4: Internet Traffic Identification using Machine Learning , 2006, IEEE Globecom 2006.

[219]  Katia Obraczka,et al.  Smart Experts for Network State Estimation , 2016, IEEE Transactions on Network and Service Management.

[220]  Zhi-Li Zhang,et al.  A Modular Machine Learning System for Flow-Level Traffic Classification in Large Networks , 2012, TKDD.

[221]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[222]  Kevin R. Fall,et al.  Alternative custodians for congestion control in delay tolerant networks , 2006, CHANTS '06.

[223]  J. Knott The organization of behavior: A neuropsychological theory , 1951 .

[224]  Renata Teixeira,et al.  Traffic classification on the fly , 2006, CCRV.

[225]  Stefan Axelsson,et al.  The base-rate fallacy and the difficulty of intrusion detection , 2000, TSEC.

[226]  Michael L. Littman,et al.  Packet Routing in Dynamically Changing Networks: A Reinforcement Learning Approach , 1993, NIPS.

[227]  Pin-Han Ho,et al.  ARBR: Adaptive reinforcement-based routing for DTN , 2010, 2010 IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications.

[228]  Mark Crovella,et al.  Bayesian packet loss detection for TCP , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[229]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[230]  Richard S. Sutton,et al.  Learning to predict by the methods of temporal differences , 1988, Machine Learning.

[231]  E. J. Sondik,et al.  The Optimal Control of Partially Observable Markov Decision Processes. , 1971 .

[232]  Richelle V. Adams,et al.  Active Queue Management: A Survey , 2013, IEEE Communications Surveys & Tutorials.

[233]  Gürsel Serpen,et al.  Why machine learning algorithms fail in misuse detection on KDD intrusion detection data set , 2004, Intell. Data Anal..

[234]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[235]  Wenke Lee,et al.  McPAD: A multiple classifier system for accurate payload-based anomaly detection , 2009, Comput. Networks.

[236]  Sergio M. Savaresi,et al.  Unsupervised learning techniques for an intrusion detection system , 2004, SAC '04.

[237]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[238]  Filip De Turck,et al.  Design and optimisation of a (FA)Q-learning-based HTTP adaptive streaming client , 2014, Connect. Sci..

[239]  Larry Peterson,et al.  TCP Vegas: new techniques for congestion detection and avoidance , 1994, SIGCOMM 1994.

[240]  Donald Michie,et al.  Expert systems in the micro-electronic age , 1979 .

[241]  Howon Kim,et al.  Long Short Term Memory Recurrent Neural Network Classifier for Intrusion Detection , 2016, 2016 International Conference on Platform Technology and Service (PlatCon).

[242]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[243]  Qusay H. Mahmoud,et al.  Cognitive Networks: Towards Self-Aware Networks , 2007 .

[244]  Carey L. Williamson,et al.  Identifying and discriminating between web and peer-to-peer traffic in the network core , 2007, WWW '07.

[245]  Radu State,et al.  Machine Learning Approach for IP-Flow Record Anomaly Detection , 2011, Networking.

[246]  Christos Douligeris,et al.  Static vs. adaptive feedback congestion controller for ATM networks , 1995, Proceedings of GLOBECOM '95.

[247]  Sudharman K. Jayaweera,et al.  A Survey on Machine-Learning Techniques in Cognitive Radios , 2013, IEEE Communications Surveys & Tutorials.

[248]  Lutz Prechelt,et al.  Early Stopping-But When? , 1996, Neural Networks: Tricks of the Trade.

[249]  Jie Wu,et al.  Robust Network Traffic Classification , 2015, IEEE/ACM Transactions on Networking.

[250]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[251]  Thouraya Bouabana-Tebibel,et al.  Empirical QoE/QoS correlation model based on multiple parameters for VoD flows , 2012, 2012 IEEE Global Communications Conference (GLOBECOM).

[252]  Wolfgang Mühlbauer,et al.  Digging into HTTPS: flow-based classification of webmail traffic , 2010, IMC '10.

[253]  Van Jacobson,et al.  Controlling Queue Delay , 2012, ACM Queue.

[254]  J. R. Quinlan Learning With Continuous Classes , 1992 .

[255]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[256]  Ece Guran Schmidt,et al.  Machine learning algorithms for accurate flow-based network traffic classification: Evaluation and comparison , 2010, Perform. Evaluation.

[257]  M. L. Tsetlin,et al.  Automaton theory and modeling of biological systems , 1973 .

[258]  M. E. Maron,et al.  Automatic Indexing: An Experimental Inquiry , 1961, JACM.

[259]  Johnson I. Agbinya,et al.  Prediction of Faults in Cellular Networks Using Bayesian Network Model , 2007 .

[260]  Ahmed Helmy,et al.  TCP over multihop 802.11 networks: issues and performance enhancement , 2005, MobiHoc '05.

[261]  Erhan Guven,et al.  A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection , 2016, IEEE Communications Surveys & Tutorials.

[262]  Wolfgang Kellerer,et al.  Boost online virtual network embedding: Using neural networks for admission control , 2016, 2016 12th International Conference on Network and Service Management (CNSM).

[263]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[264]  Mehdi MORADI,et al.  A Neural Network Based System for Intrusion Detection and Classification of Attacks , 2004 .

[265]  A. Forstert,et al.  FROMS: Feedback Routing for Optimizing Multiple Sinks in WSN with Reinforcement Learning , 2007, 2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information.

[266]  D. Broomhead,et al.  Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .

[267]  Gabriel Maciá-Fernández,et al.  Anomaly-based network intrusion detection: Techniques, systems and challenges , 2009, Comput. Secur..

[268]  Antonio Pietrabissa,et al.  Admission Control in UMTS Networks based on Approximate Dynamic Programming , 2008, Eur. J. Control.

[269]  Ajith Abraham,et al.  Feature deduction and ensemble design of intrusion detection systems , 2005, Comput. Secur..

[270]  Shingo Ata,et al.  Towards real-time processing for application identification of encrypted traffic , 2014, 2014 International Conference on Computing, Networking and Communications (ICNC).

[271]  Michele Zorzi,et al.  Cognitive Call Admission Control for VoIP over IEEE 802.11 Using Bayesian Networks , 2011, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011.

[272]  Robert L. Grossman,et al.  SABUL: A Transport Protocol for Grid Computing , 2003, Journal of Grid Computing.

[273]  Yan Zhu,et al.  Network Traffic Prediction based on Particle Swarm BP Neural Network , 2013, J. Networks.

[274]  Jennifer C. Hou,et al.  On exploiting traffic predictability in active queue management , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[275]  Srikanth Kandula,et al.  Resource Management with Deep Reinforcement Learning , 2016, HotNets.

[276]  Ching Y. Suen,et al.  A Method of Combining Multiple Experts for the Recognition of Unconstrained Handwritten Numerals , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[277]  Jérôme François,et al.  A multi-level framework to identify HTTPS services , 2016, NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium.

[278]  G. Tesauro Practical Issues in Temporal Difference Learning , 1992 .

[279]  Dario Rossi,et al.  Support vector regression for link load prediction , 2008 .

[280]  Vincenzo Suraci,et al.  A Model Based RL Admission Control Algorithm for Next Generation Networks , 2008, 2009 Eighth International Conference on Networks.

[281]  Roy A. Maxion,et al.  Anomaly detection for diagnosis , 1990, [1990] Digest of Papers. Fault-Tolerant Computing: 20th International Symposium.

[282]  Peter Stone TPOT-RL Applied to Network Routing , 2000, ICML.

[283]  Kranthimanoj Nagothu,et al.  Prediction of cloud data center networks loads using stochastic and neural models , 2011, 2011 6th International Conference on System of Systems Engineering.

[284]  Md Zahangir Alom,et al.  Intrusion detection using deep belief networks , 2015, 2015 National Aerospace and Electronics Conference (NAECON).

[285]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[286]  Marius Kloft,et al.  Active learning for network intrusion detection , 2009, AISec '09.

[287]  John S. Baras,et al.  Automated network fault management , 1997, MILCOM 97 MILCOM 97 Proceedings.

[288]  Manuela M. Veloso,et al.  Team-partitioned, opaque-transition reinforcement learning , 1999, AGENTS '99.

[289]  R. L. Stratonovich CONDITIONAL MARKOV PROCESSES , 1960 .

[290]  Jim Dowling,et al.  Collaborative reinforcement learning of autonomic behaviour , 2004 .

[291]  Gerald Tesauro,et al.  Online Resource Allocation Using Decompositional Reinforcement Learning , 2005, AAAI.

[292]  Mr. Jamal Mhawesh Challab Adaptive Opportunistic Routing For Wireless AD HOC Networks , 2016 .

[293]  Ren Wang,et al.  Efficiency/friendliness tradeoffs in TCP Westwood , 2002, Proceedings ISCC 2002 Seventh International Symposium on Computers and Communications.

[294]  Jim Dowling,et al.  Using feedback in collaborative reinforcement learning to adaptively optimize MANET routing , 2005, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[295]  Min Zhang,et al.  Failure prediction using machine learning and time series in optical network. , 2017, Optics express.

[296]  L. Bernstein,et al.  How technology shapes network management , 1989, IEEE Network.

[297]  Yi Zhang,et al.  A self-learning call admission control scheme for CDMA cellular networks , 2005, IEEE Transactions on Neural Networks.

[298]  Kagan Tumer,et al.  Using Collective Intelligence to Route Internet Traffic , 1998, NIPS.

[299]  John J. Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities , 1999 .

[300]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[301]  Ting Wang,et al.  Adaptive Routing for Sensor Networks using Reinforcement Learning , 2006, The Sixth IEEE International Conference on Computer and Information Technology (CIT'06).

[302]  Peter Reichl,et al.  The Logarithmic Nature of QoE and the Role of the Weber-Fechner Law in QoE Assessment , 2010, 2010 IEEE International Conference on Communications.

[303]  Ibrahim Habib,et al.  Congestion control mechanism for ATM networks using neural networks , 1995, Proceedings IEEE International Conference on Communications ICC '95.

[304]  Kien A. Hua,et al.  Decision tree classifier for network intrusion detection with GA-based feature selection , 2005, ACM Southeast Regional Conference.

[305]  Johnson I. Agbinya,et al.  A Probabilistic Approach To Faults Prediction in Cellular Networks , 2006, International Conference on Networking, International Conference on Systems and International Conference on Mobile Communications and Learning Technologies (ICNICONSMCL'06).

[306]  Jean C. Walrand,et al.  Knowledge-Defined Networking: Modelització de la xarxa a través de l’aprenentatge automàtic i la inferència , 2016 .

[307]  Andrew W. Moore,et al.  Bayesian Neural Networks for Internet Traffic Classification , 2007, IEEE Transactions on Neural Networks.

[308]  Marvin Minsky,et al.  Perceptrons: An Introduction to Computational Geometry , 1969 .

[309]  Raouf Boutaba,et al.  A connectionist approach to dynamic resource management for virtualised network functions , 2016, 2016 12th International Conference on Network and Service Management (CNSM).

[310]  Ian F. Akyildiz,et al.  QoS-Aware Adaptive Routing in Multi-layer Hierarchical Software Defined Networks: A Reinforcement Learning Approach , 2016, 2016 IEEE International Conference on Services Computing (SCC).

[311]  Emin Anarim,et al.  An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer networks , 2005, Expert Syst. Appl..

[312]  Dario Rossi,et al.  Building a cooperative P2P-TV application over a wise network: the approach of the European FP-7 strep NAPA-WINE , 2008, IEEE Communications Magazine.

[313]  Zwi Altman,et al.  Automated Diagnosis for UMTS Networks Using Bayesian Network Approach , 2008, IEEE Transactions on Vehicular Technology.

[314]  Atsushi Hiramatsu Integration of ATM Call Admission Control and Link Capacity Control by Distributed Neural Networks , 1991, IEEE J. Sel. Areas Commun..

[315]  Mo Adda,et al.  Comparative Analysis of Clustering Techniques in Network Traffic Faults Classification , 2017 .

[316]  J. Bezdek,et al.  FCM: The fuzzy c-means clustering algorithm , 1984 .

[317]  Konstantina Papagiannaki,et al.  Toward the Accurate Identification of Network Applications , 2005, PAM.

[318]  Markus Fiedler,et al.  Quality of Experience from user and network perspectives , 2010, Ann. des Télécommunications.

[319]  Lawrence Davis,et al.  Training Feedforward Neural Networks Using Genetic Algorithms , 1989, IJCAI.

[320]  Sami Tabbane,et al.  Cognitive radio networks management using an ANFIS approach with QoS/QoE mapping scheme , 2015, 2015 International Symposium on Networks, Computers and Communications (ISNCC).

[321]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[322]  Jean-Charles Grégoire,et al.  INRS Audiovisual Quality Dataset , 2016, ACM Multimedia.

[323]  Henry J. Kelley,et al.  Gradient Theory of Optimal Flight Paths , 1960 .

[324]  Mark Allman,et al.  On making TCP more robust to packet reordering , 2002, CCRV.

[325]  Andrew Jennings A learning system for communications network configuration , 1988 .

[326]  Li Wei,et al.  Network Traffic Classification Using K-means Clustering , 2007 .

[327]  Filip De Turck,et al.  Design and evaluation of learning algorithms for dynamic resource management in virtual networks , 2014, 2014 IEEE Network Operations and Management Symposium (NOMS).

[328]  Renata Teixeira,et al.  Implementation Issues of Early Application Identification , 2007, AINTEC.

[329]  Nicola Baldo,et al.  A supervised learning approach to cognitive access point selection , 2011, 2011 IEEE GLOBECOM Workshops (GC Wkshps).

[330]  David Vengerov,et al.  A Reinforcement Learning Approach to Dynamic Resource Allocation ∗ , 2005 .

[331]  Kang G. Shin,et al.  The BLUE active queue management algorithms , 2002, TNET.

[332]  Martin Thomson,et al.  Hypertext Transfer Protocol Version 2 (HTTP/2) , 2015, RFC.

[333]  Paul E. McKenney,et al.  Stochastic fairness queueing , 1990, Proceedings. IEEE INFOCOM '90: Ninth Annual Joint Conference of the IEEE Computer and Communications Societies@m_The Multiple Facets of Integration.

[334]  Ali Imran,et al.  Fault prediction and reliability analysis in a real cellular network , 2017, 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC).

[335]  George M. Siouris,et al.  Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[336]  Zihui Ge,et al.  Lightweight application classification for network management , 2007, INM '07.

[337]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[338]  Geoffrey E. Hinton,et al.  Deep Boltzmann Machines , 2009, AISTATS.

[339]  Özgür B. Akan,et al.  ATL: an adaptive transport layer suite for next-generation wireless Internet , 2004, IEEE Journal on Selected Areas in Communications.

[340]  KyoungSoo Park,et al.  APUNet: Revitalizing GPU as Packet Processing Accelerator , 2017, NSDI.

[341]  Fan Zhou,et al.  Learning-Based and Data-Driven TCP Design for Memory-Constrained IoT , 2016, 2016 International Conference on Distributed Computing in Sensor Systems (DCOSS).

[342]  Yunsi Fei,et al.  QELAR: A Machine-Learning-Based Adaptive Routing Protocol for Energy-Efficient and Lifetime-Extended Underwater Sensor Networks , 2010, IEEE Transactions on Mobile Computing.

[343]  Zhitang Chen,et al.  Online flow size prediction for improved network routing , 2016, 2016 IEEE 24th International Conference on Network Protocols (ICNP).

[344]  Antonio Pescapè,et al.  Issues and future directions in traffic classification , 2012, IEEE Network.

[345]  Min Luo,et al.  A Framework for QoS-aware Traffic Classification Using Semi-supervised Machine Learning in SDNs , 2016, 2016 IEEE International Conference on Services Computing (SCC).

[346]  Dario Rossi,et al.  Abacus: Accurate behavioral classification of P2P-TV traffic , 2011, Comput. Networks.

[347]  Y. L. Cun Learning Process in an Asymmetric Threshold Network , 1986 .

[348]  Andrew W. Moore,et al.  A Machine Learning Approach for Efficient Traffic Classification , 2007, 2007 15th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems.

[349]  Shunzheng Yu,et al.  Internet Traffic Classification Using Machine Learning: A Token-based Approach , 2011, 2011 14th IEEE International Conference on Computational Science and Engineering.

[350]  Shie-Jue Lee,et al.  A neural-fuzzy system for congestion control in ATM networks , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[351]  J. Ross Quinlan,et al.  Simplifying Decision Trees , 1987, Int. J. Man Mach. Stud..

[352]  Stefan Savage,et al.  Unexpected means of protocol inference , 2006, IMC '06.

[353]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[354]  Andrea Zanella,et al.  A machine learning approach to QoE-based video admission control and resource allocation in wireless systems , 2014, 2014 13th Annual Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET).

[355]  Ming Wu,et al.  Network bandwidth predictor (NBP): a system for online network performance forecasting , 2006, Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06).

[356]  Grenville J. Armitage,et al.  A survey of techniques for internet traffic classification using machine learning , 2008, IEEE Communications Surveys & Tutorials.

[357]  Eric Horvitz,et al.  Dynamic Network Models for Forecasting , 1992, UAI.

[358]  Serge Fdida,et al.  An effective hop-by-hop Interest shaping mechanism for CCN communications , 2012, 2012 Proceedings IEEE INFOCOM Workshops.

[359]  Antonio Pescapè,et al.  Traffic identification engine: an open platform for traffic classification , 2014, IEEE Network.

[360]  Michalis Faloutsos,et al.  Internet traffic classification demystified: myths, caveats, and the best practices , 2008, CoNEXT '08.

[361]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[362]  Michael I. Jordan,et al.  Failure diagnosis using decision trees , 2004 .

[363]  Zhi-Li Zhang,et al.  Inferring applications at the network layer using collective traffic statistics , 2010, 2010 22nd International Teletraffic Congress (lTC 22).

[364]  S. Stigler Gauss and the Invention of Least Squares , 1981 .

[365]  Jing Ren,et al.  Toward efficient parallel routing optimization for large-scale SDN networks using GPGPU , 2018, J. Netw. Comput. Appl..

[366]  Filip De Turck,et al.  A multi-agent Q-Learning-based framework for achieving fairness in HTTP Adaptive Streaming , 2014, 2014 IEEE Network Operations and Management Symposium (NOMS).

[367]  Raouf Boutaba,et al.  Machine Learning for Cognitive Network Management , 2018, IEEE Communications Magazine.

[368]  Anthony McGregor,et al.  Flow Clustering Using Machine Learning Techniques , 2004, PAM.

[369]  Ryan Hamilton,et al.  QUIC: A UDP-Based Secure and Reliable Transport for HTTP/2 , 2016 .

[370]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[371]  Anja Feldmann,et al.  Dynamic Application-Layer Protocol Analysis for Network Intrusion Detection , 2006, USENIX Security Symposium.

[372]  Qiao Yan,et al.  A New Active Queue Management Algorithm Based on Self-Adaptive Fuzzy Neural-Network PID Controller , 2011, 2011 International Conference on Internet Technology and Applications.

[373]  Gerald Tesauro,et al.  Reinforcement Learning in Autonomic Computing: A Manifesto and Case Studies , 2007, IEEE Internet Computing.

[374]  Hong Jiang,et al.  TCP-Gvegas with prediction and adaptation in multi-hop ad hoc networks , 2017, Wirel. Networks.

[375]  Mohammad Zulkernine,et al.  Anomaly Based Network Intrusion Detection with Unsupervised Outlier Detection , 2006, 2006 IEEE International Conference on Communications.

[376]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[377]  Ibrahim Matta,et al.  End-to-End Inference of Loss Nature in a Hybrid Wired/Wireless Environment , 2002 .

[378]  Ian H. Witten,et al.  An Adaptive Optimal Controller for Discrete-Time Markov Environments , 1977, Inf. Control..

[379]  Xinbing Wang,et al.  Improve throughput of TCP-Vegas in multihop ad hoc networks , 2008, Comput. Commun..

[380]  Antonio Pescapè,et al.  Early Classification of Network Traffic through Multi-classification , 2011, TMA.

[381]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[382]  C. Siva Ram Murthy,et al.  Learning-TCP: A stochastic approach for efficient update in TCP congestion window in ad hoc wireless networks , 2011, J. Parallel Distributed Comput..

[383]  A.N. Zincir-Heywood,et al.  On the capability of an SOM based intrusion detection system , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[384]  Grenville J. Armitage,et al.  Clustering to Assist Supervised Machine Learning for Real-Time IP Traffic Classification , 2008, 2008 IEEE International Conference on Communications.

[385]  Vern Paxson,et al.  Bro: a system for detecting network intruders in real-time , 1998, Comput. Networks.

[386]  C. Siva Ram Murthy,et al.  A novel learning based solution for efficient data transport in heterogeneous wireless networks , 2008, HiPC'08.

[387]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[388]  Pierre Geurts,et al.  Machine-learnt versus analytical models of TCP throughput , 2007, Comput. Networks.

[389]  Lingfen Sun,et al.  Content-Based Video Quality Prediction for MPEG4 Video Streaming over Wireless Networks , 2009, J. Multim..

[390]  Hari Balakrishnan,et al.  TCP ex machina: computer-generated congestion control , 2013, SIGCOMM.

[391]  Tristan Henderson,et al.  CRAWDAD dataset dartmouth/campus (v.2004-11-09) , 2004 .

[392]  Anukool Lakhina,et al.  Multivariate Online Anomaly Detection Using Kernel Recursive Least Squares , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[393]  Sebastian Zander,et al.  A preliminary performance comparison of five machine learning algorithms for practical IP traffic flow classification , 2006, CCRV.

[394]  Sammy Chan,et al.  IAPI: An intelligent adaptive PI active queue management scheme , 2012, Comput. Commun..

[395]  Markus Fiedler,et al.  A generic quantitative relationship between quality of experience and quality of service , 2010, IEEE Network.

[396]  Dit-Yan Yeung,et al.  Predictive Q-Routing: A Memory-based Reinforcement Learning Approach to Adaptive Traffic Control , 1995, NIPS.

[397]  Ian H. Witten,et al.  Practical machine learning and its application to problems in agriculture , 1993 .

[398]  Alekseĭ Grigorʹevich Ivakhnenko,et al.  CYBERNETIC PREDICTING DEVICES , 1966 .

[399]  Bogdan V. Ghita,et al.  On Internet Traffic Classification: A Two-Phased Machine Learning Approach , 2016, J. Comput. Networks Commun..

[400]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[401]  Zied Elouedi,et al.  Naive Bayes vs decision trees in intrusion detection systems , 2004, SAC '04.

[402]  Richard Wolski,et al.  Dynamically forecasting network performance using the Network Weather Service , 1998, Cluster Computing.

[403]  Riyad Alshammari,et al.  Machine learning based encrypted traffic classification: Identifying SSH and Skype , 2009, 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications.

[404]  Keiji Kanazawa,et al.  A model for reasoning about persistence and causation , 1989 .

[405]  J. Cid-Sueiro,et al.  Q-Probabilistic Routing in Wireless Sensor Networks , 2007, 2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information.

[406]  R. Bellman Dynamic programming. , 1957, Science.

[407]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[408]  Jun Zhang,et al.  Internet Traffic Classification by Aggregating Correlated Naive Bayes Predictions , 2023, IEEE Transactions on Information Forensics and Security.

[409]  Ken-ichi Funahashi,et al.  On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.

[410]  Dong Seong Kim,et al.  Genetic algorithm to improve SVM based network intrusion detection system , 2005, 19th International Conference on Advanced Information Networking and Applications (AINA'05) Volume 1 (AINA papers).

[411]  Grenville J. Armitage,et al.  Training on multiple sub-flows to optimise the use of Machine Learning classifiers in real-world IP networks , 2006, Proceedings. 2006 31st IEEE Conference on Local Computer Networks.

[412]  Charles Elkan,et al.  Results of the KDD'99 classifier learning , 2000, SKDD.

[413]  Yuancheng Li,et al.  A Hybrid Malicious Code Detection Method based on Deep Learning , 2015 .

[414]  C. Siva Ram Murthy,et al.  Learning-TCP: A Novel Learning Automata Based Congestion Window Updating Mechanism for Ad hoc Wireless Networks , 2005, HiPC.

[415]  Cheng Wu,et al.  Fuzzy Kanerva-based function approximation for reinforcement learning , 2009, AAMAS.

[416]  Soung Chang Liew,et al.  TCP Veno: TCP enhancement for transmission over wireless access networks , 2003, IEEE J. Sel. Areas Commun..

[417]  Ivan Flores,et al.  An Optimum Character Recognition System Using Decision Functions , 1958, IRE Trans. Electron. Comput..

[418]  Hwee Pink Tan,et al.  Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications , 2014, IEEE Communications Surveys & Tutorials.

[419]  Nei Kato,et al.  State-of-the-Art Deep Learning: Evolving Machine Intelligence Toward Tomorrow’s Intelligent Network Traffic Control Systems , 2017, IEEE Communications Surveys & Tutorials.

[420]  Michele Zorzi,et al.  On the effects of cognitive mobility prediction in wireless multi-hop ad hoc networks , 2014, 2014 IEEE International Conference on Communications (ICC).

[421]  Van Nostrand,et al.  Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm , 1967 .

[422]  Hiroshi Esaki,et al.  Heuristic Congestion Control for Message Deletion in Delay Tolerant Network , 2010, NEW2AN.

[423]  Maria Papadopouli,et al.  On User-Centric Modular QoE Prediction for VoIP Based on Machine-Learning Algorithms , 2016, IEEE Transactions on Mobile Computing.

[424]  G. Lewicki,et al.  Approximation by Superpositions of a Sigmoidal Function , 2003 .

[425]  Taeshik Shon,et al.  A hybrid machine learning approach to network anomaly detection , 2007, Inf. Sci..

[426]  Amutha Prabakar Muniyandi,et al.  Network Anomaly Detection by Cascading K-Means Clustering and C4.5 Decision Tree algorithm , 2012 .

[427]  Dimiter R. Avresky,et al.  A Machine Learning-Based Framework for Building Application Failure Prediction Models , 2015, 2015 IEEE International Parallel and Distributed Processing Symposium Workshop.

[428]  Mounir Ghogho,et al.  Deep learning approach for Network Intrusion Detection in Software Defined Networking , 2016, 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM).

[429]  Jean-Charles Grégoire,et al.  Machine Learning--Based Parametric Audiovisual Quality Prediction Models for Real-Time Communications , 2017, ACM Trans. Multim. Comput. Commun. Appl..

[430]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .