Orientation Columns in Visual Cortex Haphazard Wiring of Simple Receptive Fields and

[1]  R. Shapley,et al.  An egalitarian network model for the emergence of simple and complex cells in visual cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[2]  R. Shapley,et al.  Dynamics of Orientation Selectivity in the Primary Visual Cortex and the Importance of Cortical Inhibition , 2003, Neuron.

[3]  J. A. Hirsch Synaptic physiology and receptive field structure in the early visual pathway of the cat. , 2003, Cerebral cortex.

[4]  R Clay Reid,et al.  Laminar processing of stimulus orientation in cat visual cortex , 2002, The Journal of physiology.

[5]  Luis M Martinez,et al.  Synaptic physiology of the flow of information in the cat's visual cortex in vivo , 2002, The Journal of physiology.

[6]  R. Reid,et al.  Rules of Connectivity between Geniculate Cells and Simple Cells in Cat Primary Visual Cortex , 2001, The Journal of Neuroscience.

[7]  M. V. Tsodyks,et al.  Intracortical origin of visual maps , 2001, Nature Neuroscience.

[8]  Dmitri B. Chklovskii,et al.  Orientation Preference Patterns in Mammalian Visual Cortex A Wire Length Minimization Approach , 2001, Neuron.

[9]  P. Lennie,et al.  Color vision: Putting it together , 2000, Current Biology.

[10]  A Shmuel,et al.  Coexistence of linear zones and pinwheels within orientation maps in cat visual cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[11]  B. Chapman,et al.  Cortical Cell Orientation Selectivity Fails to Develop in the Absence of ON-Center Retinal Ganglion Cell Activity , 2000, The Journal of Neuroscience.

[12]  David H. Goldberg,et al.  Structured Long-Range Connections Can Provide a Scaffold for Orientation Maps , 2000, The Journal of Neuroscience.

[13]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[14]  Reid R. Clay,et al.  Specificity and strength of retinogeniculate connections. , 1999, Journal of neurophysiology.

[15]  T. Bonhoeffer,et al.  Development of orientation preference in the mammalian visual cortex. , 1999, Journal of neurobiology.

[16]  Frances S. Chance,et al.  Complex cells as cortically amplified simple cells , 1999, Nature Neuroscience.

[17]  K. Miller,et al.  Correlation-Based Development of Ocularly Matched Orientation and Ocular Dominance Maps: Determination of Required Input Activities , 1998, The Journal of Neuroscience.

[18]  D. Ferster,et al.  Strength and Orientation Tuning of the Thalamic Input to Simple Cells Revealed by Electrically Evoked Cortical Suppression , 1998, Neuron.

[19]  F. Sengpiel,et al.  Intrinsic and environmental factors in the development of functional maps in cat visual cortex , 1998, Neuropharmacology.

[20]  M. Stryker,et al.  The role of visual experience in the development of columns in cat visual cortex. , 1998, Science.

[21]  W. Singer,et al.  Development of Orientation Preference Maps in Area 18 of Kitten Visual Cortex , 1997, The European journal of neuroscience.

[22]  R. Shapley,et al.  New perspectives on the mechanisms for orientation selectivity , 1997, Current Opinion in Neurobiology.

[23]  G. DeAngelis,et al.  Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. , 1997, Journal of neurophysiology.

[24]  C. Shatz,et al.  Synaptic Activity and the Construction of Cortical Circuits , 1996, Science.

[25]  M. Stryker,et al.  Development of Orientation Preference Maps in Ferret Primary Visual Cortex , 1996, The Journal of Neuroscience.

[26]  N. Swindale The development of topography in the visual cortex: a review of models. , 1996, Network.

[27]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[28]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[29]  Tobias Bonhoeffer,et al.  Reverse occlusion leads to a precise restoration of orientation preference maps in visual cortex , 1994, Nature.

[30]  KD Miller A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  K. Obermayer,et al.  Geometry of orientation and ocular dominance columns in monkey striate cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  A. Peters,et al.  Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. , 1993, Cerebral cortex.

[33]  Amiram Grinvald,et al.  Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns , 1991, Nature.

[34]  Prof. Dr. Valentino Braitenberg,et al.  Anatomy of the Cortex , 1991, Studies of Brain Function.

[35]  R. Soodak The retinal ganglion cell mosaic defines orientation columns in striate cortex. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[36]  P. Heggelund Quantitative studies of enhancement and suppression zones in the receptive field of simple cells in cat striate cortex. , 1986, The Journal of physiology.

[37]  D. Whitteridge,et al.  Innervation of cat visual areas 17 and 18 by physiologically identified X‐ and Y‐ type thalamic afferents. II. Identification of postsynaptic targets by GABA immunocytochemistry and Golgi impregnation , 1985, The Journal of comparative neurology.

[38]  B. B. Lee,et al.  A comparison of visual responses of cat lateral geniculate nucleus neurones with those of ganglion cells afferent to them. , 1985, The Journal of physiology.

[39]  B. Boycott,et al.  Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[40]  P. Heggelund,et al.  Receptive field organization of simple cells in cat striate cortex , 1981, Experimental brain research.

[41]  D. Ferster,et al.  The axonal arborizations of lateral geniculate neurons in the striate cortex of the cat , 1978, The Journal of comparative neurology.

[42]  P. O. Bishop,et al.  Hypercomplex and simple/complex cell classifications in cat striate cortex. , 1978, Journal of neurophysiology.

[43]  Y. Frégnac,et al.  Early development of visual cortical cells in normal and dark‐reared kittens: relationship between orientation selectivity and ocular dominance. , 1978, The Journal of physiology.

[44]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[45]  P. Hammond Cat retinal ganglion cells: size and shape of receptive field centres , 1974, The Journal of physiology.

[46]  K. Mardia Statistics of Directional Data , 1972 .

[47]  W. Levick,et al.  Simultaneous recording of input and output of lateral geniculate neurones. , 1971, Nature: New biology.

[48]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[49]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[50]  D. Hubel,et al.  Integrative action in the cat's lateral geniculate body , 1961, The Journal of physiology.