Opportunistic sampling-based planning for active visual SLAM

This paper reports on an active visual SLAM path planning algorithm that plans loop-closure paths in order to decrease visual navigation uncertainty. Loop-closing revisit actions bound the robot's uncertainty but also contribute to redundant area coverage and increased path length.We propose an opportunistic path planner that leverages sampling-based techniques and information filtering for planning revisit paths that are coverage efficient. Our algorithm employs Gaussian Process regression for modeling the prediction of camera registrations and uses a two-step optimization for selecting revisit actions. We show that the proposed method outperforms existing solutions for bounding navigation uncertainty with a hybrid simulation experiment using a real-world dataset collected by a ship hull inspection robot.

[1]  Ryan M. Eustice,et al.  Perception-driven navigation: Active visual SLAM for robotic area coverage , 2013, 2013 IEEE International Conference on Robotics and Automation.

[2]  Frank Dellaert,et al.  iSAM: Incremental Smoothing and Mapping , 2008, IEEE Transactions on Robotics.

[3]  Hanumant Singh,et al.  Exactly Sparse Delayed-State Filters for View-Based SLAM , 2006, IEEE Transactions on Robotics.

[4]  John J. Leonard,et al.  Adaptive Mobile Robot Navigation and Mapping , 1999, Int. J. Robotics Res..

[5]  R. Bajcsy Active perception , 1988 .

[6]  Frank P. Ferrie,et al.  Autonomous exploration: driven by uncertainty , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Alexei Makarenko,et al.  Information based adaptive robotic exploration , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Juan Andrade-Cetto,et al.  Path planning in belief space with pose SLAM , 2011, 2011 IEEE International Conference on Robotics and Automation.

[9]  Nicholas Roy,et al.  Rapidly-exploring Random Belief Trees for motion planning under uncertainty , 2011, 2011 IEEE International Conference on Robotics and Automation.

[10]  Jaime Valls Miró,et al.  Active Pose SLAM , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Geoffrey A. Hollinger,et al.  Sampling-based Motion Planning for Robotic Information Gathering , 2013, Robotics: Science and Systems.

[12]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[13]  Nicholas Roy,et al.  Global A-Optimal Robot Exploration in SLAM , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[14]  Wolfram Burgard,et al.  Information Gain-based Exploration Using Rao-Blackwellized Particle Filters , 2005, Robotics: Science and Systems.

[15]  Stefan B. Williams,et al.  Bathymetric SLAM with no map overlap using Gaussian Processes , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Ryan M. Eustice,et al.  Real-Time Visual SLAM for Autonomous Underwater Hull Inspection Using Visual Saliency , 2013, IEEE Transactions on Robotics.

[17]  Fabio Tozeto Ramos,et al.  A Sparse Covariance Function for Exact Gaussian Process Inference in Large Datasets , 2009, IJCAI.

[18]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Franz S. Hover,et al.  Advanced perception, navigation and planning for autonomous in-water ship hull inspection , 2012, Int. J. Robotics Res..

[20]  Hanumant Singh,et al.  Visually Mapping the RMS Titanic: Conservative Covariance Estimates for SLAM Information Filters , 2006, Int. J. Robotics Res..

[21]  Ryan M. Eustice,et al.  Pose-graph visual SLAM with geometric model selection for autonomous underwater ship hull inspection , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  Randall Smith,et al.  Estimating Uncertain Spatial Relationships in Robotics , 1987, Autonomous Robot Vehicles.

[23]  David J. Hand,et al.  Statistics: A Very Short Introduction , 2008 .

[24]  Héctor H. González-Baños,et al.  Navigation Strategies for Exploring Indoor Environments , 2002, Int. J. Robotics Res..

[25]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[26]  Fabio Tozeto Ramos,et al.  Gaussian process occupancy maps* , 2012, Int. J. Robotics Res..

[27]  N. Roy,et al.  The Belief Roadmap: Efficient Planning in Belief Space by Factoring the Covariance , 2009, Int. J. Robotics Res..

[28]  Ryan M. Eustice,et al.  Combined visually and geometrically informative link hypothesis for pose-graph visual SLAM using bag-of-words , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[29]  Juan Andrade-Cetto,et al.  Planning Reliable Paths With Pose SLAM , 2013, IEEE Transactions on Robotics.