Lamination and Within-Area Integration in the Neocortex

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i x I General Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 II Regional and Species Variations in Cortical Architectur e . . . . . . . . . . . . . . . . . 6 A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 B. Laminar Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1. Species Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. Regional Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3. Computational Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 C. Cell Densities and Laminar Thicknesses . . . . . . . . . . . . . . . . . . . . . . . 12 1. Overall Thickness and Cells per Unit Area . . . . . . . . . . . . . . . . . . . . 12 2. Laminar Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3. Computational Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 D. Excitatory Cells and Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1. Dendrites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2. Axons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 E. Inhibitory Cells and Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1. Overall Percentages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2. Arborizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 3. Computational Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 F. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 G. Appendix: Connectivity Volume Calculations . . . . . . . . . . . . . . . . . . 26 III Current Ideas on Modes of Cortical Sensory Processing . . . . . . . . . . . . . . . . . 27 A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 B. Early Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 1. Gestalt Psychology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2. Hebb’sOrganization of Behavior. . . . . . . . . . . . . . . . . . . . . . . . . 29 C. Primary and Secondary Cortical Processing . . . . . . . . . . . . . . . . . . . . . . 30 D. Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2. Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3. Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 E. Attention and Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

[1]  Theo Geisel,et al.  Breaking Rotational Symmetry in a Self-Organizing Map Model for Orientation Map Development , 1998, Neural Computation.

[2]  David Mumford,et al.  Neuronal Architectures for Pattern-theoretic Problems , 1995 .

[3]  Geoffrey E. Hinton,et al.  The "wake-sleep" algorithm for unsupervised neural networks. , 1995, Science.

[4]  Keiji Tanaka,et al.  Functional architecture in monkey inferotemporal cortex revealed by in vivo optical imaging , 1998, Neuroscience Research.

[5]  C. Stevens,et al.  Input synchrony and the irregular firing of cortical neurons , 1998, Nature Neuroscience.

[6]  R Linsker,et al.  From basic network principles to neural architecture: emergence of orientation-selective cells. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[7]  U. Kuhnt,et al.  Epileptiform Activity in the Guinea‐pig Neocortical Slice Spreads Preferentially along Supragranular Layers—Recordings with Voltage‐sensitive Dyes , 1995, The European journal of neuroscience.

[8]  M. Deschenes,et al.  Intracortical Axonal Projections of Lamina VI Cells of the Primary Somatosensory Cortex in the Rat: A Single-Cell Labeling Study , 1997, The Journal of Neuroscience.

[9]  N T Carnevale,et al.  Electrotonic architecture of hippocampal CA1 pyramidal neurons based on three-dimensional reconstructions. , 1996, Journal of neurophysiology.

[10]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[11]  M. Colonnier,et al.  A laminar analysis of the number of neurons, glia, and synapses in the visual cortex (area 17) of adult macaque monkeys , 1982, The Journal of comparative neurology.

[12]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[13]  T. Sejnowski,et al.  Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons. , 1991, Journal of neurophysiology.

[14]  Roger B. H. Tootell,et al.  Segregation of global and local motion processing in primate middle temporal visual area , 1992, Nature.

[15]  D. Prince,et al.  Functional Properties of Neocortical Neurons , 2022 .

[16]  E. G. Jones,et al.  Characteristics of intracellularly injected infragranular pyramidal neurons in cat primary auditory cortex. , 1992, Cerebral cortex.

[17]  Joan Stiles,et al.  The Effects of Early Focal Brain Injury on Lateralization of Cognitive Function , 1998 .

[18]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[19]  Robert Hecht-Nielsen,et al.  A Theory of the Cerebral Cortex , 1998, ICONIP.

[20]  R. Langacker Foundations of Cognitive Grammar: Volume I: Theoretical Prerequisites , 1987 .

[21]  吉川 健治,et al.  A new method for magnetoencephalography (MEG) : A three dimensional magnetometer-spatial filter system , 1999 .

[22]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[23]  Karl J. Zilles,et al.  The Cortex of the Rat: A Stereotaxic Atlas , 1985 .

[24]  K. Zhang,et al.  Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  Tetsuro Yamamoto,et al.  Morphology of layer V pyramidal neurons in the cat somatosensory cortex: an intracellular HRP study , 1987, Brain Research.

[26]  E T Rolls,et al.  Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network , 1992, Hippocampus.

[27]  T. Sejnowski,et al.  Reduced compartmental models of neocortical pyramidal cells , 1993, Journal of Neuroscience Methods.

[28]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[29]  K. Tanaka,et al.  Cross-Correlation Analysis of Interneuronal Connectivity in cat visual cortex. , 1981, Journal of neurophysiology.

[30]  Frances S. Chance,et al.  Synaptic Depression and the Temporal Response Characteristics of V1 Cells , 1998, The Journal of Neuroscience.

[31]  Kevan A. C. Martin,et al.  A Canonical Microcircuit for Neocortex , 1989, Neural Computation.

[32]  M. Young The organization of neural systems in the primate cerebral cortex , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[33]  G. Elston,et al.  The occipitoparietal pathway of the macaque monkey: comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. , 1997, Cerebral cortex.

[34]  R Porter,et al.  Morphology of pyramidal neurones in monkey motor cortex and the synaptic actions of their intracortical axon collaterals. , 1988, The Journal of physiology.

[35]  T. Teyler,et al.  Laminar pattern of synaptic activity in rat primary visual cortex: comparison of in vivo and in vitro studies employing the current source density analysis , 1994, Brain Research.

[36]  T. Rebotier,et al.  Vision and Imagery: The Role of Cortical Attractor Dynamics , 1998 .

[37]  V. Mountcastle,et al.  An organizing principle for cerebral function : the unit module and the distributed system , 1978 .

[38]  Philip S. Ulinski,et al.  The Cerebral Cortex of Reptiles , 1990 .

[39]  Kechen Zhang,et al.  Emergence of Position-Independent Detectors of Sense of Rotation and Dilation with Hebbian Learning: An Analysis , 1999, Neural Computation.

[40]  Jean Bullier,et al.  The Timing of Information Transfer in the Visual System , 1997 .

[41]  Ruye Wang A Simple Competitive Account of Some Response Properties of Visual Neurons in Area MSTd , 1995, Neural Computation.

[42]  F. Zhou,et al.  Morphological properties of intracellularly labeled layer I neurons in rat neocortex , 1996, The Journal of comparative neurology.

[43]  Matthew A. Wilson,et al.  The simulation of large-scale neural networks , 1989 .

[44]  Herbert A. Simon,et al.  The Architecture of Complexity: Hierarchic Systems , 2019, The Sciences of the Artificial.

[45]  C. Stevens,et al.  Facilitation and depression at single central synapses , 1995, Neuron.

[46]  M Marin-Padilla,et al.  The chandelier cell of the human visual cortex: A Golgi study , 1987, The Journal of comparative neurology.

[47]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[48]  C. Beaulieu,et al.  Quantitative aspects of the GABA circuitry in the primary visual cortex of the adult rat , 1994, The Journal of comparative neurology.

[49]  E G Jones,et al.  Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[51]  D. Whitteridge,et al.  Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. , 1984, The Journal of physiology.

[52]  E. G. Jones,et al.  Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  G. Fauconnier Mappings in thought and language , 1997 .

[54]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[55]  H Haug,et al.  Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: a stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant). , 1987, The American journal of anatomy.

[56]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[57]  Helge J. Ritter,et al.  The Joint Development of Orientation and Ocular Dominance: Role of Constraints , 1997, Neural Computation.

[58]  J. M. Hupé,et al.  Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons , 1998, Nature.

[59]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[60]  E. G. Jones,et al.  Patterns of axon collateralization of identified supragranular pyramidal neurons in the cat auditory cortex. , 1991, Cerebral cortex.

[61]  J. DeFelipe,et al.  A correlative electron microscopic study of basket cells and large gabaergic neurons in the monkey sensory-motor cortex , 1986, Neuroscience.

[62]  C. Malsburg,et al.  How patterned neural connections can be set up by self-organization , 1976, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[63]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[64]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[65]  L C Katz,et al.  Local circuitry of identified projection neurons in cat visual cortex brain slices , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  Alan Peters,et al.  Cellular components of the cerebral cortex , 1984 .

[67]  M Sur,et al.  Components of field potentials evoked by white matter stimulation in isolated slices of primary visual cortex: spatial distributions and synaptic order. , 1990, Journal of neurophysiology.

[68]  M. A. O'Neil,et al.  The connectional organization of the cortico-thalamic system of the cat. , 1999, Cerebral cortex.

[69]  R. Frostig,et al.  Optical imaging of neuronal activity. , 1988, Physiological reviews.

[70]  B. Sakmann,et al.  Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[71]  S. Yoshizawa,et al.  A new method for magnetoencephalography: a three-dimensional magnetometer-spatial filter system , 1999, Neuroscience.

[72]  J. B. Levitt,et al.  Intrinsic cortical connections in macaque visual area V2: Evidence for interaction between different functional streams , 1994, The Journal of comparative neurology.

[73]  T. Bonhoeffer,et al.  Optimal Smoothness of Orientation Preference Maps , 1994 .

[74]  John H. R. Maunsell,et al.  Visual processing in monkey extrastriate cortex. , 1987, Annual review of neuroscience.

[75]  J. B. Levitt,et al.  Intrinsic lattice connections of macaque monkey visual cortical area V4 , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[76]  H. Pockberger,et al.  Electrophysiological and morphological properties of rat motor cortex neurons in vivo , 1991, Brain Research.

[77]  R. Malach,et al.  Cortical hierarchy reflected in the organization of intrinsic connections in macaque monkey visual cortex , 1993, The Journal of comparative neurology.

[78]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[79]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V2 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[80]  R Porter,et al.  Morphology of neurons in area 4 gamma of the cat's cortex studied with intracellular injection of HRP [corrected and issued with original paging in J Comp Neurol 1988 Nov 8;277(2)]. , 1988, The Journal of comparative neurology.

[81]  A. Larkman,et al.  Dendritic morphology of pyramidal neurones of the visual cortex of the rat: III. Spine distributions , 1991, The Journal of comparative neurology.

[82]  J C Anderson,et al.  Synaptic output of physiologically identified spiny stellate neurons in cat visual cortex , 1994, The Journal of comparative neurology.

[83]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[84]  D. Amaral,et al.  The entorhinal cortex of the monkey: I. Cytoarchitectonic organization , 1987, The Journal of comparative neurology.

[85]  D. V. van Essen,et al.  A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[86]  J DeFelipe,et al.  A study of SMI 32‐stained pyramidal cells, parvalbumin‐immunoreactive chandelier cells, and presumptive thalamocortical axons in the human temproal neocortex , 1994, The Journal of comparative neurology.

[87]  Anders M. Dale,et al.  Representation of motion boundaries in retinotopic human visual cortical areas , 1997, Nature.

[88]  Ralph Linsker,et al.  How to Generate Ordered Maps by Maximizing the Mutual Information between Input and Output Signals , 1989, Neural Computation.

[89]  J. Rinzel,et al.  Propagation of spindle waves in a thalamic slice model. , 1996, Journal of neurophysiology.

[90]  D. Pandya,et al.  Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey , 1989, The Journal of comparative neurology.

[91]  H. Schwark,et al.  Distribution and proportions of GABA‐Immunoreactive neurons in cat primary somatosensory cortex , 1994, The Journal of comparative neurology.

[92]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[93]  V. Meskenaite,et al.  Calretinin‐immunoreactive local circuit neurons in area 17 of the cynomolgus monkey, Macaca fascicularis , 1997, The Journal of comparative neurology.

[94]  C. Blakemore,et al.  Analysis of connectivity in the cat cerebral cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[95]  R. von der Heydt,et al.  Mechanisms of contour perception in monkey visual cortex. I. Lines of pattern discontinuity , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[96]  M. J. Friedlander,et al.  Physiological, morphological, and cytochemical characteristics of a layer 1 neuron in cat striate cortex , 1989, The Journal of comparative neurology.

[97]  S Grossberg,et al.  Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentations , 1985, Perception & psychophysics.

[98]  E. White Cortical Circuits , 1989, Birkhäuser Boston.

[99]  Terrence J. Sejnowski,et al.  Constrained Optimization for Neural Map Formation: A Unifying Framework for Weight Growth and Normalization , 1998, Neural Computation.

[100]  O. Reiser,et al.  Principles Of Gestalt Psychology , 1936 .

[101]  E. Callaway,et al.  Contributions of individual layer 6 pyramidal neurons to local circuitry in macaque primary visual cortex , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[102]  M. Cynader,et al.  Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17). , 1992, Cerebral cortex.

[103]  A. A. Mullin,et al.  Principles of neurodynamics , 1962 .

[104]  J. Lund,et al.  Heterogeneity of chandelier neurons in monkey neocortex: Corticotropin‐releasing factor‐and parvalbumin‐immunoreactive populations , 1990, The Journal of comparative neurology.

[105]  J Wenzel,et al.  [Quantitative histological studies of lamina V and lamina III pyramidal neurons in the motor cortex of the rat. The question of laterality]. , 1988, Journal fur Hirnforschung.

[106]  J. Szentágothai The ‘module-concept’ in cerebral cortex architecture , 1975, Brain Research.

[107]  M. Stryker,et al.  The role of visual experience in the development of columns in cat visual cortex. , 1998, Science.

[108]  D J Simons,et al.  Laminar differences in bicuculline methiodide's effects on cortical neurons in the rat whisker/barrel system. , 1998, Somatosensory & motor research.

[109]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[110]  E. Fetz,et al.  Intracortical connectivity revealed by spike-triggered averaging in slice preparations of cat visual cortex , 1988, Brain Research.

[111]  Y. Kang,et al.  Electrophysiological and morphological characteristics of layer VI pyramidal cells in the cat motor cortex. , 1994, Journal of neurophysiology.

[112]  Terrence J. Sejnowski,et al.  Neuronal Tuning: To Sharpen or Broaden? , 1999, Neural Computation.

[113]  Victor A. F. Lamme,et al.  Contextual Modulation in Primary Visual Cortex , 1996, The Journal of Neuroscience.

[114]  D. Kerr,et al.  Suppression of GABAB receptor function in rat neocortical slices by amiloride. , 1994, European journal of pharmacology.

[115]  D. Schmechel,et al.  Variability in the terminations of GABAergic chandelier cell axons on initial segments of pyramidal cell axons in the monkey sensory‐motor cortex , 1985, The Journal of comparative neurology.

[116]  I. Ferrer,et al.  Chandelier cell axons identified by parvalbumin-immunoreactivity in the normal human temporal cortex and in Alzheimer's disease , 1993, Neuroscience.

[117]  D. Prince,et al.  Burst generating and regular spiking layer 5 pyramidal neurons of rat neocortex have different morphological features , 1990, The Journal of comparative neurology.

[118]  J. Winer,et al.  Morphology and spatial distribution of GABAergic neurons in cat primary auditory cortex (AI) , 1994, The Journal of comparative neurology.

[119]  G. Edelman,et al.  Neural dynamics in a model of the thalamocortical system. I. Layers, loops and the emergence of fast synchronous rhythms. , 1997, Cerebral cortex.

[120]  A. Sillito Functional Considerations of the Operation of GABAergic Inhibitory Processes in the Visual Cortex , 1984 .

[121]  Idan Segev,et al.  Methods in Neuronal Modeling , 1988 .

[122]  Susumu Terakawa,et al.  Optical responses evoked by white matter stimulation in rat visual cortical slices and their relation to neural activities , 1996, Brain Research.

[123]  J. Leo van Hemmen,et al.  Development of spatiotemporal receptive fields of simple cells: I. Model formulation , 1997, Biological Cybernetics.

[124]  R. Desimone,et al.  Responses of Neurons in Inferior Temporal Cortex during Memory- Guided Visual Search , 1998 .

[125]  M Marin-Padilla,et al.  Number and distribution of the apical dendritic spines of the layer V pyramidal cells in man , 1967, The Journal of comparative neurology.

[126]  K. Rockland,et al.  Organization of individual cortical axons projecting from area V1 (area 17) to V2 (area 18) in the macaque monkey , 1990, Visual Neuroscience.

[127]  KD Miller A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[128]  M. Schmutz,et al.  GABAB receptors in various in vitro and in vivo models of epilepsy: A study with the GABAB receptor blocker CGP 35348 , 1992, Neuroscience.

[129]  C. Cherniak The Bounded Brain: Toward Quantitative Neuroanatomy , 1990, Journal of Cognitive Neuroscience.

[130]  L. Benardo,et al.  Separate activation of fast and slow inhibitory postsynaptic potentials in rat neocortex in vitro. , 1994, The Journal of physiology.

[131]  M. Schmutz,et al.  Comparative in vivo and in vitro studies with the potent GABAB receptor antagonist, CGP 56999A. , 1997, European journal of pharmacology.

[132]  Florentin Wörgötter,et al.  Design Principles of Columnar Organization in Visual Cortex , 1994, Neural Computation.

[133]  R. von der Heydt,et al.  Illusory contours and cortical neuron responses. , 1984, Science.

[134]  M Marín-Padilla,et al.  Three‐dimensional structural organization of layer I of the human cerebral cortex: A golgi study , 1990, The Journal of comparative neurology.

[135]  T. Powell,et al.  The basic uniformity in structure of the neocortex. , 1980, Brain : a journal of neurology.

[136]  J. Leo van Hemmen,et al.  Development of spatiotemporal receptive fields of simple cells: II. Simulation and analysis , 1997, Biological Cybernetics.

[137]  Margaret E. Sereno,et al.  Learning to See Rotation and Dilation with a Hebb Rule , 1990, NIPS.

[138]  P. Somogyi,et al.  Synapses, axonal and dendritic patterns of GABA-immunoreactive neurons in human cerebral cortex. , 1990, Brain : a journal of neurology.

[139]  U. Eysel,et al.  Network of GABAergic large basket cells in cat visual cortex (area 18): Implication for lateral disinhibition , 1993, The Journal of comparative neurology.

[140]  U Kuhnt,et al.  The Contribution of Intracortical Connections to Horizontal Spread of Activity in the Neocortex as Revealed by Voltage Sensitive Dyes and a Fast Optical Recording Method , 1993, The European journal of neuroscience.

[141]  K. Miller,et al.  Ocular dominance column development: analysis and simulation. , 1989, Science.

[142]  D. Snodderly,et al.  Organization of striate cortex of alert, trained monkeys (Macaca fascicularis): ongoing activity, stimulus selectivity, and widths of receptive field activating regions. , 1995, Journal of neurophysiology.

[143]  K. Rockland,et al.  Divergent feedback connections from areas V4 and TEO in the macaque , 1994, Visual Neuroscience.

[144]  G J Goodhill,et al.  The influence of neural activity and intracortical connectivity on the periodicity of ocular dominance stripes. , 1998, Network.

[145]  J. London,et al.  Optical recordings of the cortical response to whisker stimulation before and after the addition of an epileptogenic agent , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[146]  J. DeFelipe,et al.  GABA—Peptide Neurons of the Primate Cerebral Cortex , 1987 .

[147]  Prof. Dr. Heiko Braak,et al.  Architectonics of the Human Telencephalic Cortex , 1980, Studies of Brain Function.

[148]  J. B. Levitt,et al.  Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. , 1993, Cerebral cortex.

[149]  D. Amaral,et al.  The entorhinal cortex of the monkey: III. Subcortical afferents , 1987, The Journal of comparative neurology.

[150]  T. Sejnowski,et al.  Brain and cognition , 1989 .

[151]  Paul Mineiro,et al.  Analysis of Direction Selectivity Arising from Recurrent Cortical Interactions , 1998, Neural Computation.

[152]  M. Wertheimer A source book of Gestalt psychology. , 1939 .

[153]  Victor A. F. Lamme The neurophysiology of figure-ground segregation in primary visual cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[154]  R. Desimone,et al.  The representation of stimulus familiarity in anterior inferior temporal cortex. , 1993, Journal of neurophysiology.

[155]  C. Wilson,et al.  Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. , 1994, Journal of neurophysiology.

[156]  D. Amaral,et al.  The entorhinal cortex of the monkey: II. Cortical afferents , 1987, The Journal of comparative neurology.

[157]  Stephen Grossberg,et al.  The ART of adaptive pattern recognition by a self-organizing neural network , 1988, Computer.

[158]  Professor Moshe Abeles,et al.  Local Cortical Circuits , 1982, Studies of Brain Function.

[159]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[160]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[161]  W. J. Nowack Neocortical Dynamics and Human EEG Rhythms , 1995, Neurology.

[162]  L. Cauller,et al.  Synaptic physiology of horizontal afferents to layer I in slices of rat SI neocortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[163]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[164]  G. Edelman,et al.  Reentry and the problem of integrating multiple cortical areas: simulation of dynamic integration in the visual system. , 1992, Cerebral cortex.

[165]  Maria Huhtala,et al.  Random Variables and Stochastic Processes , 2021, Matrix and Tensor Decompositions in Signal Processing.

[166]  G. Blasdel,et al.  Orientation selectivity, preference, and continuity in monkey striate cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[167]  E. Fetz,et al.  Synaptic Interactions between Primate Precentral Cortex Neurons Revealed by Spike-Triggered Averaging of Intracellular Membrane Potentials In Vivo , 1996, The Journal of Neuroscience.

[168]  Masayuki Kikuchi,et al.  Neural Network Model of the Visual System: Binding Form and Motion , 1996, Neural Networks.

[169]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[170]  Michael Conrad Adaptability , 1926, Springer US.

[171]  A. Keller,et al.  Intrinsic circuitry and physiological properties of pyramidal neurons in rat barrel cortex , 1997, Experimental Brain Research.

[172]  J. Deuchars,et al.  Large, deep layer pyramid-pyramid single axon EPSPs in slices of rat motor cortex display paired pulse and frequency-dependent depression, mediated presynaptically and self-facilitation, mediated postsynaptically. , 1993, Journal of neurophysiology.

[173]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[174]  A. Peters,et al.  Different kinds of axon terminals forming symmetric synapses with the cell bodies and initial axon segments of layer II/III pyramidal cells. III. Origins and frequency of occurrence of the terminals , 1992, Journal of neurocytology.

[175]  E. Todorov,et al.  A local circuit approach to understanding integration of long-range inputs in primary visual cortex. , 1998, Cerebral cortex.

[176]  R. von der Heydt,et al.  Mechanisms of contour perception in monkey visual cortex. II. Contours bridging gaps , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[177]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[178]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[179]  U. Eysel,et al.  Functional and Structural Topography of Horizontal Inhibitory Connections in Cat Visual Cortex , 1993, The European journal of neuroscience.

[180]  T. Sejnowski,et al.  Effects of inhibition and dendritic saturation in simulated neocortical pyramidal cells. , 1994, Journal of neurophysiology.

[181]  F. Valverde,et al.  Neocortical endeavor: basic neuronal organization in the cortex of hedgehog. , 1981, Progress in clinical and biological research.

[182]  B. C. Motter Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. , 1993, Journal of neurophysiology.

[183]  Bartlett W. Mel,et al.  Information Processing in Dendritic Trees , 1994, Neural Computation.

[184]  Kenneth D. Miller,et al.  The Role of Constraints in Hebbian Learning , 1994, Neural Computation.

[185]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[186]  E M Callaway,et al.  Prenatal Development of Layer-Specific Local Circuits in Primary Visual Cortex of the Macaque Monkey , 1998, The Journal of Neuroscience.

[187]  T. Albright,et al.  Contribution of area MT to perception of three-dimensional shape: a computational study , 1996, Vision Research.

[188]  S. Grossberg,et al.  Neural dynamics of form perception: boundary completion, illusory figures, and neon color spreading. , 1985, Psychological review.

[189]  E. Niebur,et al.  Modeling the Temporal Dynamics of IT Neurons in Visual Search: A Mechanism for Top-Down Selective Attention , 1996, Journal of Cognitive Neuroscience.

[190]  A. Cowey,et al.  The axo-axonic interneuron in the cerebral cortex of the rat, cat and monkey , 1982, Neuroscience.

[191]  E. Callaway,et al.  Contributions of individual layer 2–5 spiny neurons to local circuits in macaque primary visual cortex , 1996, Visual Neuroscience.

[192]  A. Burkhalter Development of forward and feedback connections between areas V1 and V2 of human visual cortex. , 1993, Cerebral cortex.

[193]  David H. Goldberg,et al.  Lateral connectivity as a scaffold for developing orientation preference maps , 1999, Neurocomputing.

[194]  A. Larkman Dendritic morphology of pyramidal neurones of the visual cortex of the rat: I. Branching patterns , 1991, The Journal of comparative neurology.

[195]  S. Grossberg,et al.  Neural dynamics of form perception: boundary completion, illusory figures, and neon color spreading. , 1985 .

[196]  Paul Leonard Gabbott,et al.  Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: II. Quantitative areal and laminar distributions , 1996, The Journal of comparative neurology.

[197]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[198]  B W Connors,et al.  Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex. , 1989, Journal of neurophysiology.

[199]  Asaf Keller,et al.  Synaptic relationships involving local axon collaterals of pyramidal neurons in the cat motor cortex , 1993, The Journal of comparative neurology.

[200]  R Linsker,et al.  From basic network principles to neural architecture: emergence of spatial-opponent cells. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[201]  Y Tsau,et al.  Initiation of spontaneous epileptiform activity in the neocortical slice. , 1998, Journal of neurophysiology.

[202]  J. Lund,et al.  Local circuit neurons of developing and mature macaque prefrontal cortex: Golgi and immunocytochemical characteristics , 1993, The Journal of comparative neurology.

[203]  J. B. Levitt,et al.  Receptive fields and functional architecture of macaque V2. , 1994, Journal of neurophysiology.

[204]  J. Morrison,et al.  Ultrastructural analysis of somatostatin‐immunoreactive neurons and synapses in the temporal and occipital cortex of the macaque monkey , 1989, The Journal of comparative neurology.

[205]  George Lakoff,et al.  Women, Fire, and Dangerous Things , 1987 .

[206]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[207]  C. Koch,et al.  A detailed model of the primary visual pathway in the cat: comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[208]  H. Olpe,et al.  Inhibitory processes in normal and epileptic-like rat hippocampal slices: the role of GABAB receptors. , 1989, European journal of pharmacology.

[209]  J. Bullier,et al.  Functional interactions between areas V1 and V2 in the monkey , 1996, Journal of Physiology-Paris.

[210]  Adrian Robert,et al.  From Contour Completion to Image Schemas: A Modern Perspective on Gestalt Psychology , 1997 .

[211]  G Tononi,et al.  Modeling perceptual grouping and figure-ground segregation by means of active reentrant connections. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[212]  M. Merzenich,et al.  Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[213]  Charles G. Gross,et al.  Horizontal Propagation of Excitation in Rat Visual Cortical Slices Revealed by Optical Imaging , 2006 .

[214]  Victor A. F. Lamme,et al.  Feedforward, horizontal, and feedback processing in the visual cortex , 1998, Current Opinion in Neurobiology.

[215]  C. Beaulieu,et al.  Numerical data on neocortical neurons in adult rat, with special reference to the GABA population , 1993, Brain Research.

[216]  R Linsker,et al.  From basic network principles to neural architecture: emergence of orientation columns. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[217]  Françoise Condé,et al.  Local circuit neurons immunoreactive for calretinin, calbindin D‐28k or parvalbumin in monkey prefronatal cortex: Distribution and morphology , 1994, The Journal of comparative neurology.

[218]  E. Capaldi,et al.  The organization of behavior. , 1992, Journal of applied behavior analysis.

[219]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[220]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[221]  D. Zipser,et al.  Identification models of the nervous system , 1992, Neuroscience.

[222]  F. Sanides,et al.  A comparative golgi sutdy of the neocortex in insectivores and rodents. , 1974, Zeitschrift fur mikroskopisch-anatomische Forschung.

[223]  W. Köhler Gestalt Psychology: An Introduction to New Concepts in Modern Psychology , 1970 .

[224]  W. Singer Synchronization of cortical activity and its putative role in information processing and learning. , 1993, Annual review of physiology.

[225]  J. Bolz,et al.  Morphological types of projection neurons in layer 5 of cat visual cortex , 1990, The Journal of comparative neurology.

[226]  D. Pandya,et al.  Prefrontal cortex in relation to other cortical areas in rhesus monkey: architecture and connections. , 1990, Progress in brain research.

[227]  U. Mitzdorf Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. , 1985, Physiological reviews.

[228]  G Mann,et al.  ON THE THALAMUS * , 1905, British medical journal.

[229]  A. Peters,et al.  Enigmatic bipolar cell of rat visual cortex , 1988, The Journal of comparative neurology.

[230]  R. Coggeshall,et al.  Methods for determining numbers of cells and synapses: A case for more uniform standards of review , 1996, The Journal of comparative neurology.

[231]  Y. Amitai,et al.  Propagating neuronal discharges in neocortical slices: computational and experimental study. , 1997, Journal of neurophysiology.

[232]  E. Harth,et al.  Some quantitative results on golgi impregnated axons in rat visual cortex using a computer assisted video digitizer , 1977, The Journal of comparative neurology.

[233]  K. Martin,et al.  Excitatory synaptic inputs to spiny stellate cells in cat visual cortex , 1996, Nature.

[234]  B. Connors,et al.  Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. , 1989, Journal of neurophysiology.

[235]  Michael Merzenich,et al.  Hebb-Type Dynamics is Sufficient to Account for the Inverse Magnification Rule in Cortical Somatotopy , 1990, Neural Computation.

[236]  G. Blasdel,et al.  Voltage-sensitive dyes reveal a modular organization in monkey striate cortex , 1986, Nature.

[237]  Terrence J. Sejnowski,et al.  The Variance of Covariance Rules for Associative Matrix Memories and Reinforcement Learning , 1993, Neural Computation.

[238]  R. Porter,et al.  Morphology of neurons in area 4γ of the cat's cortex studied with intracellular injection of HRP , 1988 .

[239]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[240]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[241]  Gully A. P. C. Burns,et al.  Cluster structure of cortical systems in mammalian brains , 1998 .

[242]  J. B. Levitt,et al.  Topography of pyramidal neuron intrinsic connections in macaque monkey prefrontal cortex (areas 9 and 46) , 1993, The Journal of comparative neurology.

[243]  D. V. van Essen,et al.  Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. , 1992, Journal of neurophysiology.

[244]  Gilles Fauconnier,et al.  Conceptual Integration Networks , 1998, Cogn. Sci..

[245]  Martin I. Sereno,et al.  Learning the Solution to the Aperture Problem for Pattern Motion with a Hebb Rule , 1988, NIPS.

[246]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[247]  P. Morgane,et al.  Implications of the “initial brain” concept for brain evolution in Cetacea , 1988, Behavioral and Brain Sciences.

[248]  A. Cowey,et al.  Patterns of inter- and intralaminar GABAergic connections distinguish striate (V1) and extrastriate (V2, V4) visual cortices and their functionally specialized subdivisions in the rhesus monkey , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[249]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[250]  Zhaoping Li,et al.  A Neural Model of Contour Integration in the Primary Visual Cortex , 1998, Neural Computation.

[251]  K. Rockland,et al.  Terminal arbors of individual “Feedback” axons projecting from area V2 to V1 in the macaque monkey: A study using immunohistochemistry of anterogradely transported Phaseolus vulgaris‐leucoagglutinin , 1989, The Journal of comparative neurology.

[252]  C. Nicholson Electric current flow in excitable cells J. J. B. Jack, D. Noble &R. W. Tsien Clarendon Press, Oxford (1975). 502 pp., £18.00 , 1976, Neuroscience.

[253]  S Ullman,et al.  Sequence seeking and counter streams: a computational model for bidirectional information flow in the visual cortex. , 1995, Cerebral cortex.

[254]  G. Edelman Group selection and phasic reentrant signaling a theory of higher brain function , 1982 .

[255]  R. Desimone,et al.  Columnar organization of directionally selective cells in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[256]  A. Riesen,et al.  Deprived somatosensory‐motor experience in stumptailed monkey neocortex: Dendritic spine density and dendritic branching of layer IIIB pyramidal cells , 1989, The Journal of comparative neurology.

[257]  R. Douglas,et al.  Opening the grey box , 1991, Trends in Neurosciences.

[258]  Paul Leonard Gabbott,et al.  Local‐circuit neurones in the medial prefrontal cortex (areas 25, 32 and 24b) in the rat: Morphology and quantitative distribution , 1997, The Journal of comparative neurology.

[259]  Victor A. F. Lamme,et al.  Organization of contour from motion processing in primate visual cortex , 1994, Vision Research.

[260]  Karrie R. Jones,et al.  NMDA- and non-NMDA-receptor components of excitatory synaptic potentials recorded from cells in layer V of rat visual cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[261]  R. Born,et al.  Segregation of global and local motion processing in primate middle temporal visual area , 1993, Nature.

[262]  C. Koch,et al.  Constraints on cortical and thalamic projections: the no-strong-loops hypothesis , 1998, Nature.

[263]  Miguel Marn-Padilla,et al.  The Pyramidal Cell and its Local-Circuit Interneurons: A Hypothetical Unit of the Mammalian Cerebral Cortex , 1990, Journal of Cognitive Neuroscience.

[264]  Prof. Dr. Valentino Braitenberg,et al.  Anatomy of the Cortex , 1991, Studies of Brain Function.

[265]  H. Tamura,et al.  Horizontal interactions between visual cortical neurones studied by cross‐correlation analysis in the cat. , 1991, The Journal of physiology.

[266]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[267]  M Tanifuji,et al.  Horizontal propagation of excitation in rat visual cortical slices revealed by optical imaging. , 1994, Science.

[268]  K. Fukushima Neural network model for selective attention in visual pattern recognition and associative recall. , 1987, Applied optics.

[269]  M P Young,et al.  Indeterminate Organization of the Visual System , 1996, Science.

[270]  Jack D. Cowan,et al.  Spatial Decorrelation in Orientation Tuned Cortical Cells , 1996, NIPS 1996.

[271]  Paul Leonard Gabbott,et al.  Calretinin neurons in human medial prefrontal cortex (areas 24a,b,c, 32′, and 25) , 1997, The Journal of comparative neurology.

[272]  D. Buonomano,et al.  Cortical plasticity: from synapses to maps. , 1998, Annual review of neuroscience.

[273]  M. Colonnier,et al.  Number of neurons in individual laminae of areas 3B, 4 gamma, and 6a alpha of the cat cerebral cortex: a comparison with major visual areas. , 1989, The Journal of comparative neurology.

[274]  S. Grossberg,et al.  Cortical dynamics of form and motion integration: Persistence, apparent motion, and illusory contours , 1996, Vision Research.

[275]  K. Rockland,et al.  Morphology of individual axons projecting from area V2 to MT in the macaque , 1995, The Journal of comparative neurology.

[276]  Teuvo Kohonen,et al.  Self-organization and associative memory: 3rd edition , 1989 .

[277]  D. Pandya,et al.  Architecture and Connections of Cortical Association Areas , 1985 .

[278]  Rajesh P. N. Rao,et al.  Dynamic Model of Visual Recognition Predicts Neural Response Properties in the Visual Cortex , 1997, Neural Computation.

[279]  Klaus Schulten,et al.  Models of Orientation and Ocular Dominance Columns in the Visual Cortex: A Critical Comparison , 1995, Neural Computation.

[280]  Mitsuo Kawato,et al.  A forward-inverse optics model of reciprocal connections between visual cortical areas , 1993 .

[281]  L. C. Katz,et al.  Emergence of functional circuits in ferret visual cortex visualized by optical imaging , 1995, Neuron.

[282]  A. Peters,et al.  The organization of pyramidal cells in area 18 of the rhesus monkey. , 1997, Cerebral cortex.