Weakly Supervised 3D Object Detection from Lidar Point Cloud

It is laborious to manually label point cloud data for training high-quality 3D object detectors. This work proposes a weakly supervised approach for 3D object detection, only requiring a small set of weakly annotated scenes, associated with a few precisely labeled object instances. This is achieved by a two-stage architecture design. Stage-1 learns to generate cylindrical object proposals under weak supervision, i.e., only the horizontal centers of objects are click-annotated on bird's view scenes. Stage-2 learns to refine the cylindrical proposals to get cuboids and confidence scores, using a few well-labeled object instances. Using only 500 weakly annotated scenes and 534 precisely labeled vehicle instances, our method achieves 85-95% the performance of current top-leading, fully supervised detectors (which require 3, 712 exhaustively and precisely annotated scenes with 15, 654 instances). More importantly, with our elaborately designed network architecture, our trained model can be applied as a 3D object annotator, allowing both automatic and active working modes. The annotations generated by our model can be used to train 3D object detectors with over 94% of their original performance (under manually labeled data). Our experiments also show our model's potential in boosting performance given more training data. Above designs make our approach highly practical and introduce new opportunities for learning 3D object detection with reduced annotation burden.

[1]  Bo Li,et al.  SECOND: Sparsely Embedded Convolutional Detection , 2018, Sensors.

[2]  Frank Keller,et al.  Training Object Class Detectors with Click Supervision , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Xiaogang Wang,et al.  From Points to Parts: 3D Object Detection From Point Cloud With Part-Aware and Part-Aggregation Network , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Ruigang Yang,et al.  The ApolloScape Dataset for Autonomous Driving , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[5]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Silvio Savarese,et al.  A coarse-to-fine model for 3D pose estimation and sub-category recognition , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Luc Van Gool,et al.  Deep Extreme Cut: From Extreme Points to Object Segmentation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[8]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[9]  Bin Yang,et al.  Multi-Task Multi-Sensor Fusion for 3D Object Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Nassir Navab,et al.  Fully-Convolutional Point Networks for Large-Scale Point Clouds , 2018, ECCV.

[11]  Ross B. Girshick,et al.  Focal Loss for Dense Object Detection , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Leonidas J. Guibas,et al.  Frustum PointNets for 3D Object Detection from RGB-D Data , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[13]  Subhransu Maji,et al.  Multi-view Convolutional Neural Networks for 3D Shape Recognition , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[14]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Jiaya Jia,et al.  Fast Point R-CNN , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[16]  Ross B. Girshick,et al.  Mask R-CNN , 2017, 1703.06870.

[17]  Thierry Chateau,et al.  Deep MANTA: A Coarse-to-Fine Many-Task Network for Joint 2D and 3D Vehicle Analysis from Monocular Image , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Huimin Ma,et al.  3D Object Proposals for Accurate Object Class Detection , 2015, NIPS.

[19]  Ruigang Yang,et al.  The ApolloScape Open Dataset for Autonomous Driving and Its Application , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Jana Kosecka,et al.  3D Bounding Box Estimation Using Deep Learning and Geometry , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Leonidas J. Guibas,et al.  Volumetric and Multi-view CNNs for Object Classification on 3D Data , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Fei-Fei Li,et al.  What's the Point: Semantic Segmentation with Point Supervision , 2015, ECCV.

[23]  Jianxiong Xiao,et al.  3D ShapeNets: A deep representation for volumetric shapes , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Xiaogang Wang,et al.  PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Adrien Gaidon,et al.  Autolabeling 3D Objects With Differentiable Rendering of SDF Shape Priors , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Xiaoyong Shen,et al.  STD: Sparse-to-Dense 3D Object Detector for Point Cloud , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[27]  Sebastian Scherer,et al.  VoxNet: A 3D Convolutional Neural Network for real-time object recognition , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[28]  Rodrigo Benenson,et al.  Large-Scale Interactive Object Segmentation With Human Annotators , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Bin Yang,et al.  Deep Continuous Fusion for Multi-sensor 3D Object Detection , 2018, ECCV.

[30]  Ji Wan,et al.  Multi-view 3D Object Detection Network for Autonomous Driving , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Bin Yang,et al.  PIXOR: Real-time 3D Object Detection from Point Clouds , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[32]  Yin Zhou,et al.  VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[33]  Tian Xia,et al.  Vehicle Detection from 3D Lidar Using Fully Convolutional Network , 2016, Robotics: Science and Systems.

[34]  Jiong Yang,et al.  PointPillars: Fast Encoders for Object Detection From Point Clouds , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Ming-Ting Sun,et al.  Semantic Instance Annotation of Street Scenes by 3D to 2D Label Transfer , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Sanja Fidler,et al.  Monocular 3D Object Detection for Autonomous Driving , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Steven L. Waslander,et al.  Leveraging Pre-Trained 3D Object Detection Models for Fast Ground Truth Generation , 2018, 2018 21st International Conference on Intelligent Transportation Systems (ITSC).

[38]  Silvio Savarese,et al.  Data-driven 3D Voxel Patterns for object category recognition , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[39]  Frank Keller,et al.  Extreme Clicking for Efficient Object Annotation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[40]  Song-Chun Zhu,et al.  Learning Descriptor Networks for 3D Shape Synthesis and Analysis , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[41]  Jianxiong Xiao,et al.  SUN RGB-D: A RGB-D scene understanding benchmark suite , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[42]  Xiaogang Wang,et al.  GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).