Optimal speed estimation in natural image movies predicts human performance

Accurate perception of motion depends critically on accurate estimation of retinal motion speed. Here we first analyse natural image movies to determine the optimal space-time receptive fields (RFs) for encoding local motion speed in a particular direction, given the constraints of the early visual system. Next, from the RF responses to natural stimuli, we determine the neural computations that are optimal for combining and decoding the responses into estimates of speed. The computations show how selective, invariant speed-tuned units might be constructed by the nervous system. Then, in a psychophysical experiment using matched stimuli, we show that human performance is nearly optimal. Indeed, a single efficiency parameter accurately predicts the detailed shapes of a large set of human psychometric functions. We conclude that many properties of speed-selective neurons and human speed discrimination performance are predicted by the optimal computations, and that natural stimulus variation affects optimal and human observers almost identically.

[1]  W. Geisler,et al.  Optimal disparity estimation in natural stereo images. , 2014, Journal of vision.

[2]  Nicholas J. Priebe,et al.  The Neural Representation of Speed in Macaque Area MT/V5 , 2003, The Journal of Neuroscience.

[3]  Anthony J. Movshon,et al.  Visual Response Properties of Striate Cortical Neurons Projecting to Area MT in Macaque Monkeys , 1996, The Journal of Neuroscience.

[4]  D. Heeger Half-squaring in responses of cat striate cells , 1992, Visual Neuroscience.

[5]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[6]  Edward H. Adelson,et al.  Motion illusions as optimal percepts , 2002, Nature Neuroscience.

[7]  Nicholas J. Priebe,et al.  Tuning for Spatiotemporal Frequency and Speed in Directionally Selective Neurons of Macaque Striate Cortex , 2006, The Journal of Neuroscience.

[8]  Eero P. Simoncelli,et al.  Computational models of cortical visual processing. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[9]  D. Ringach Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. , 2002, Journal of neurophysiology.

[10]  D. Heeger Modeling simple-cell direction selectivity with normalized, half-squared, linear operators. , 1993, Journal of neurophysiology.

[11]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[12]  D. G. Albrecht,et al.  Motion selectivity and the contrast-response function of simple cells in the visual cortex , 1991, Visual Neuroscience.

[13]  Rajesh P. N. Rao,et al.  Probabilistic Models of the Brain: Perception and Neural Function , 2002 .

[14]  Jonathan W. Pillow,et al.  Spectral methods for neural characterization using generalized quadratic models , 2013, NIPS.

[15]  E. Chichilnisky,et al.  Fidelity of the ensemble code for visual motion in primate retina. , 2005, Journal of neurophysiology.

[16]  Alexander Thiele,et al.  Speed skills: measuring the visual speed analyzing properties of primate MT neurons , 2001, Nature Neuroscience.

[17]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[18]  James J. DiCarlo,et al.  How Does the Brain Solve Visual Object Recognition? , 2012, Neuron.

[19]  S. McKee,et al.  The detection of motion in the peripheral visual field , 1984, Vision Research.

[20]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[21]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[22]  Kerry Hourigan,et al.  Wake transition of a rolling sphere , 2011, J. Vis..

[23]  G. DeAngelis,et al.  A Logarithmic, Scale-Invariant Representation of Speed in Macaque Middle Temporal Area Accounts for Speed Discrimination Performance , 2005, The Journal of Neuroscience.

[24]  P. Thompson Perceived rate of movement depends on contrast , 1982, Vision Research.

[25]  A. Stockman,et al.  The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype , 2000, Vision Research.

[26]  G. Orban,et al.  Human velocity and direction discrimination measured with random dot patterns , 1988, Vision Research.

[27]  D. G. Albrecht,et al.  Visual cortex neurons in monkeys and cats: Detection, discrimination, and identification , 1997, Visual Neuroscience.

[28]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[29]  Jeffrey S. Perry,et al.  Edge co-occurrence in natural images predicts contour grouping performance , 2001, Vision Research.

[30]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[31]  J. L. Schnapf,et al.  Photovoltage of rods and cones in the macaque retina. , 1995, Science.

[32]  E. Adelson,et al.  Directionally selective complex cells and the computation of motion energy in cat visual cortex , 1992, Vision Research.

[33]  Andrew B. Watson,et al.  Window of visibility: a psychophysical theory of fidelity in time-sampled visual motion displays , 1986 .

[34]  D. Ruderman,et al.  Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[35]  Johannes Burge,et al.  Optimal defocus estimation in individual natural images , 2011, Proceedings of the National Academy of Sciences.

[36]  Jiri Najemnik,et al.  Optimal stimulus encoders for natural tasks. , 2009, Journal of vision.

[37]  J. Swets,et al.  A decision-making theory of visual detection. , 1954, Psychological review.

[38]  J. van Santen,et al.  Temporal covariance model of human motion perception. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[39]  Eero P. Simoncelli,et al.  Spike-triggered neural characterization. , 2006, Journal of vision.

[40]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[41]  M. Livingstone,et al.  Mechanisms of Direction Selectivity in Macaque V1 , 1998, Neuron.

[42]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[43]  Nicole C. Rust,et al.  In praise of artifice , 2005, Nature Neuroscience.

[44]  F. A. Miles,et al.  Visual Motion and Its Role in the Stabilization of Gaze , 1992 .

[45]  R. L. Valois,et al.  The orientation and direction selectivity of cells in macaque visual cortex , 1982, Vision Research.

[46]  Charless C. Fowlkes,et al.  Natural-Scene Statistics Predict How the Figure–Ground Cue of Convexity Affects Human Depth Perception , 2010, The Journal of Neuroscience.

[47]  Wei Ji Ma,et al.  Bayesian inference with probabilistic population codes , 2006, Nature Neuroscience.

[48]  Eero P. Simoncelli,et al.  Noise characteristics and prior expectations in human visual speed perception , 2006, Nature Neuroscience.