A universal architectural pattern and specification method for robot control system design

The paper presents a universal architectural pattern and an associated specification method that can be applied in the design of robot control systems. The approach describes the system in terms of embodied agents and proposes a multi-step decomposition enabling precise definition of their inner structure and operation. An embodied agent is decomposed into effectors, receptors, both real and virtual, and a control subsystem. Those entities communicate through communication buffers. The activities of those entities are governed by FSMs that invoke behaviours formulated in terms of transition functions taking as arguments the contents of input buffers and producing the values inserted into output buffers. The method is exemplified by applying it to the design of a control system of a robot executing one of the most important tasks for a service robot, i.e. picking up, by a position–force controlled robot, an object located using an RGB-D image acquired from a Kinect. Moreover in order to substantiate the universality of the presented approach we present how classical, known from the literature, robotic architectures can be expressed as systems composed of one or more embodied agents.

[1]  Konrad Banachowicz,et al.  Research Oriented Motor Controllers for Robotic Applications , 2012 .

[2]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[3]  Stephen H. Kaisler Software paradigms , 2005 .

[4]  Moritz Tenorth,et al.  CRAM — A Cognitive Robot Abstract Machine for everyday manipulation in human environments , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  Ales Leonardis,et al.  One-shot learning and generation of dexterous grasps for novel objects , 2016, Int. J. Robotics Res..

[6]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[7]  Michael A. Arbib,et al.  A formal model of computation for sensory-based robotics , 1989, IEEE Trans. Robotics Autom..

[8]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[9]  Matthieu Herrb,et al.  A tool for the specification and the implementation of operating modules in a distributed robot architecture , 1999 .

[10]  Eric Brachmann,et al.  BOP: Benchmark for 6D Object Pose Estimation , 2018, ECCV.

[11]  Siddhartha S. Srinivasa,et al.  The MOPED framework: Object recognition and pose estimation for manipulation , 2011, Int. J. Robotics Res..

[12]  Tomasz Winiarski,et al.  Indirect force control development procedure , 2013, Robotica.

[13]  Cezary Zielinski,et al.  Grasp planning taking into account the external wrenches acting on the grasped object , 2015, 2015 10th International Workshop on Robot Motion and Control (RoMoCo).

[14]  D. Choiński,et al.  Distributed control systems integration and management with an ontology-based multi-agent system , 2023, Bulletin of the Polish Academy of Sciences Technical Sciences.

[15]  P. Skrzypczyński Multi-agent software architecture for autonomous robots: a practical approach , 2010 .

[16]  Alessandro Saffiotti,et al.  An introduction to the anchoring problem , 2003, Robotics Auton. Syst..

[17]  Tomasz Winiarski,et al.  Cloud computing support for the multi-agent robot navigation system , 2017 .

[18]  Alex Zelinsky,et al.  Learning OpenCV---Computer Vision with the OpenCV Library (Bradski, G.R. et al.; 2008)[On the Shelf] , 2009, IEEE Robotics & Automation Magazine.

[19]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[20]  Dejan Pangercic,et al.  Combining perception and knowledge processing for everyday manipulation , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  Tomasz Kornuta,et al.  Handling of Asynchronous Data Flow in Robot Perception Subsystems , 2014, SIMPAR.

[22]  Federico Tombari,et al.  3D Point Capsule Networks , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Damian M. Lyons,et al.  Performance verification for robot missions in uncertain environments , 2017, Robotics Auton. Syst..

[24]  Anis Koubâa,et al.  Robot Operating System (ROS): The Complete Reference (Volume 1) , 2016 .

[25]  Cezary Zielinski,et al.  Agent-Based Structures of Robot Systems , 2017, KKA.

[26]  Nassir Navab,et al.  SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation Great Again , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[27]  Anders Robertsson,et al.  On Distributed Knowledge Bases for Robotized Small-Batch Assembly , 2015, IEEE Transactions on Automation Science and Engineering.

[28]  E. Gat On Three-Layer Architectures , 1997 .

[29]  Ken Shoemake,et al.  Animating rotation with quaternion curves , 1985, SIGGRAPH.

[30]  Cezary Zielinski,et al.  A systematic method of designing control systems for service and field robots , 2014, 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR).

[31]  Cezary Zielinski,et al.  FSM based specification of robot control system activities , 2017, 2017 11th International Workshop on Robot Motion and Control (RoMoCo).

[32]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[33]  Cezary Zieliński Formal approach to the design of robot programming frameworks: the behavioural control case , 2005 .

[34]  Matthew T. Mason,et al.  Compliance and Force Control for Computer Controlled Manipulators , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[35]  Enric Cervera Try to Start It! The Challenge of Reusing Code in Robotics Research , 2019, IEEE Robotics and Automation Letters.

[36]  David G. Lowe,et al.  Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration , 2009, VISAPP.

[38]  R. A. Brooks,et al.  Intelligence without Representation , 1991, Artif. Intell..

[39]  A. Asadpour,et al.  Design and application of industrial machine vision systems , 2007 .

[40]  Radu Bogdan Rusu,et al.  3D is here: Point Cloud Library (PCL) , 2011, 2011 IEEE International Conference on Robotics and Automation.

[41]  Cezary Zielinski,et al.  Communication Within Multi-FSM Based Robotic Systems , 2019, J. Intell. Robotic Syst..

[42]  Cezary Zielinski,et al.  Variable structure robot control systems: The RAPP approach , 2017, Robotics Auton. Syst..

[43]  M. Janiak,et al.  Control system architecture for the investigation of motion control algorithms on an example of the mobile platform Rex , 2015 .

[44]  Cezary Zielinski,et al.  Robot Control System Design Exemplified by Multi-Camera Visual Servoing , 2015, J. Intell. Robotic Syst..

[45]  C. Zielinski The MRROC++ system , 1999, Proceedings of the First Workshop on Robot Motion and Control. RoMoCo'99 (Cat. No.99EX353).

[46]  M. Hutson Artificial intelligence faces reproducibility crisis. , 2018, Science.

[47]  Moritz Tenorth,et al.  CRAMm -- Memories for Robots Performing Everyday Manipulation Activities , 2014 .

[48]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[49]  Joris De Schutter,et al.  Specification of force-controlled actions in the "task frame formalism"-a synthesis , 1996, IEEE Trans. Robotics Autom..

[50]  Peter K. Allen,et al.  Graspit! A versatile simulator for robotic grasping , 2004, IEEE Robotics & Automation Magazine.

[51]  Vincent Lepetit,et al.  Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes , 2011, 2011 International Conference on Computer Vision.

[52]  Sergey Ioffe,et al.  Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning , 2016, AAAI.

[53]  Konrad Banachowicz,et al.  Multibehavioral position-force manipulator controller , 2016, 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR).

[54]  Cezary Zielinski,et al.  Motion Generation in the MRROC++ Robot Programming Framework , 2010, Int. J. Robotics Res..

[55]  Cezary Zielinski,et al.  Rubik's cube as a benchmark validating MRROC++ as an implementation tool for service robot control systems , 2007, Ind. Robot.

[56]  Rachid Alami,et al.  An Architecture for Autonomy , 1998, Int. J. Robotics Res..

[57]  Cezary Zielinski,et al.  Structures of visual servos , 2010, Robotics Auton. Syst..

[58]  Issa A. D. Nesnas,et al.  The CLARAty Project: Coping with Hardware and Software Heterogeneity , 2005, PPSDR@ICRA.

[59]  Tomasz Kornuta,et al.  WUT Visual Perception Dataset: A Dataset for Registration and Recognition of Objects , 2016, AUTOMATION.

[60]  Karsten Berns,et al.  Soft Robot Control with a Behaviour-Based Architecture , 2015 .

[61]  Fabio Bonsignorio,et al.  A New Kind of Article for Reproducible Research in Intelligent Robotics [From the Field] , 2017, IEEE Robotics Autom. Mag..

[62]  Wei Liu,et al.  SSD: Single Shot MultiBox Detector , 2015, ECCV.

[63]  Hui Chen,et al.  3D free-form object recognition in range images using local surface patches , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[64]  Kostas E. Bekris,et al.  Geometric reachability analysis for grasp planning in cluttered scenes for varying end-effectors , 2017, 2017 13th IEEE Conference on Automation Science and Engineering (CASE).

[65]  Olfa Mosbahi,et al.  BROMETH: Methodology to design safe reconfigurable medical robotic systems , 2017, The international journal of medical robotics + computer assisted surgery : MRCAS.

[66]  Wojciech Szynkiewicz,et al.  Fast Grasp Learning for Novel Objects , 2016, AUTOMATION.

[67]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[68]  Tomasz Kornuta,et al.  Modreg: A Modular Framework for RGB-D Image Acquisition and 3D Object Model Registration , 2017 .

[69]  Peter Liggesmeyer,et al.  Combining Behavior-Based and Contract-Based Control Architectures for Behavior Optimization of Networked Autonomous Vehicles in Unstructured Environments , 2018 .

[70]  Markus Vincze,et al.  OUR-CVFH - Oriented, Unique and Repeatable Clustered Viewpoint Feature Histogram for Object Recognition and 6DOF Pose Estimation , 2012, DAGM/OAGM Symposium.

[71]  Cezary Zielinski,et al.  Parallel visual-force control , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[72]  Holk Cruse,et al.  Adaptive behavior and intelligent systems without symbols and logic , 2000 .

[73]  C. Zielinski,et al.  General specification of multi-robot control system structures , 2010 .

[74]  Marcelo H. Ang,et al.  Active compliance control of a PUMA 560 robot , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[75]  Jacek Malec,et al.  Knowledge-based instruction of manipulation tasks for industrial robotics , 2015 .

[76]  Ronald Lumia,et al.  The NASREM robot control system standard , 1989 .

[77]  Geoffrey E. Hinton,et al.  Dynamic Routing Between Capsules , 2017, NIPS.

[78]  Odest Chadwicke Jenkins,et al.  Rosbridge: ROS for Non-ROS Users , 2011, ISRR.

[79]  Andy Schürr,et al.  Model-driven systems engineering: state-of-the-art and research challenges , 2010 .

[80]  S. Ambroszkiewicz,et al.  Multirobot system architecture: environment representation and protocols , 2010 .

[81]  C. Zielinski A quasi-formal approach to structuring multi-robot system controllers , 2001, Proceedings of the Second International Workshop on Robot Motion and Control. RoMoCo'01 (IEEE Cat. No.01EX535).

[82]  Reid G. Simmons,et al.  Coordinated Multiagent Teams and Sliding Autonomy for Large-Scale Assembly , 2006, Proceedings of the IEEE.

[83]  Cezary Zielinski,et al.  Specification of Abstract Robot Skills in Terms of Control System Behaviours , 2015, Progress in Automation, Robotics and Measuring Techniques.

[84]  Konrad Banachowicz,et al.  Automated generation of component system for the calibration of the service robot kinematic parameters , 2015, 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR).

[85]  Barbara Dunin-Keplicz,et al.  Coordinating multiple rescue robots , 2014 .

[86]  Moritz Tenorth,et al.  KnowRob: A knowledge processing infrastructure for cognition-enabled robots , 2013, Int. J. Robotics Res..

[87]  Robert Laganiere,et al.  OpenCV 2 Computer Vision Application Programming Cookbook , 2011 .

[88]  Reid G. Simmons,et al.  Robotic Systems Architectures and Programming , 2008, Springer Handbook of Robotics, 2nd Ed..

[89]  Tomasz Kornuta,et al.  Generation of linear cartesian trajectories for robots using industrial motion-controllers , 2011, 2011 16th International Conference on Methods & Models in Automation & Robotics.

[90]  Lavindra de Silva,et al.  A Verifiable and Correct-by-Construction Controller for Robot Functional Levels , 2011, ArXiv.