Control of a Hierarchical Team of Robots for Urban Search and Rescue

Research teams worldwide are researching the application of robots for Urban Search and Rescue (USAR) operations and some are using teams of robots. The Mechatronics Research Group of Victoria University of Wellington is developing a low cost architecture of a team of USAR robots that is hierarchically structured and can operate autonomously. The objective of this thesis is to design the autonomous control system for the proposed architecture. The overall system design and combination of hardware and software solutions needs to be evaluated in a realistic environment. The project could not perform tests in a real environment and developed a realistic simulation environment instead to allow the evaluation of hardware and software constraints. This project successfully developed an incremental mapping algorithm which served as foundation for distributed path planning, and modified an existing navigation approach to cope with the main challenges of 3D operation environments. In order to deal with multiple robots, this thesis applied a centralised control mechanism and a combination of a global and local exploration strategy. This thesis contributes software solutions to operate the low cost robot architecture and identified weaknesses in the design of the middle tier of robots. The individual algorithms, and their combination in a major control system proved to be effective, but not without limitations. Consequently, this thesis suggests solutions to overcome some of these limitations.

[1]  Qingmei Yang,et al.  A location method for autonomous vehicle based on integrated GPS/INS , 2007, 2007 IEEE International Conference on Vehicular Electronics and Safety.

[2]  Sebastian Thrun,et al.  Anytime Dynamic A*: An Anytime, Replanning Algorithm , 2005, ICAPS.

[3]  Dale Anthony Carnegie,et al.  Emotion-based parameter modulation for a hierarchical mobile robot planning and control architecture , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[5]  Brian Yamauchi,et al.  A frontier-based approach for autonomous exploration , 1997, Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA'97. 'Towards New Computational Principles for Robotics and Automation'.

[6]  Gaurav S. Sukhatme,et al.  An Experimental Study of Localization Using Wireless Ethernet , 2003, FSR.

[7]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[8]  Jihoon Choi,et al.  A bimodal approach for GPS and IMU integration for land vehicle applications , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[9]  Chris Urmson,et al.  A generic framework for robotic navigation , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).

[10]  Oliver Brock,et al.  High-speed navigation using the global dynamic window approach , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[11]  Robin R. Murphy,et al.  Introduction to AI Robotics , 2000 .

[12]  Frank L. Lewis,et al.  Autonomous Mobile Robots : Sensing, Control, Decision Making and Applications , 2006 .

[13]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[14]  Anthony Stentz,et al.  3D Field D: Improved Path Planning and Replanning in Three Dimensions , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Loren Heiny Advanced Graphics Programming Using C/C++ , 1993 .

[16]  Sven Koenig,et al.  Improved fast replanning for robot navigation in unknown terrain , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[17]  Luis Moreno,et al.  Path Planning for Mobile Robot Navigation using Voronoi Diagram and Fast Marching , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  D. Vikerimark,et al.  Reactive obstacle avoidance for mobile robots that operate in confined 3D workspaces , 2006, MELECON 2006 - 2006 IEEE Mediterranean Electrotechnical Conference.

[19]  L. Stone Theory of Optimal Search , 1975 .

[20]  Wolfram Burgard,et al.  A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[21]  Kurt Konolige,et al.  Distributed Multirobot Exploration and Mapping , 2005, Proceedings of the IEEE.

[22]  M. Maimone,et al.  Chapter 3 SURFACE NAVIGATION AND MOBILITY INTELLIGENCE ON THE MARS EXPLORATION ROVERS , 2006 .

[23]  Peter Norvig,et al.  Artificial intelligence - a modern approach, 2nd Edition , 2003, Prentice Hall series in artificial intelligence.

[24]  Yoram Koren,et al.  Potential field methods and their inherent limitations for mobile robot navigation , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[25]  Roland Siegwart,et al.  Introduction to Autonomous Mobile Robots , 2004 .

[26]  David Furcy,et al.  Lifelong Planning A , 2004, Artif. Intell..

[27]  Dale A. Carnegie,et al.  Applications of an adaptive hierarchical mobile robot navigation system , 2007 .

[28]  Ian Millington,et al.  Artificial Intelligence for Games , 2006, The Morgan Kaufmann series in interactive 3D technology.

[29]  R. Tomovic,et al.  Biologically Based Robot Control , 1990, [1990] Proceedings of the Twelfth Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[30]  Ulrich Nehmzow Mobile Robotics: A Practical Introduction , 2003 .

[31]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[32]  Michael Cramer GPS / INS Integration , 1997 .

[33]  Wolfram Burgard,et al.  Multi-Level Surface Maps for Outdoor Terrain Mapping and Loop Closing , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[34]  Iwan Ulrich,et al.  VFH+: reliable obstacle avoidance for fast mobile robots , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[35]  Javier Ibanez Guzman,et al.  A constrained SLAM approach to robust and accurate localisation of autonomous ground vehicles , 2007, Robotics Auton. Syst..

[36]  The Dynamic Window Approach to Collision Avoidance - IEEE Robotics & Automation Magazine , 2004 .

[37]  Brian Goldiez,et al.  A Survey of Commercial & Open Source Unmanned Vehicle Simulators , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[38]  D.A. Grejner-Brzezinska,et al.  Land-vehicle navigation using multiple model carrier phase DGPS/INS , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[39]  Javier Minguez,et al.  Nearness diagram (ND) navigation: collision avoidance in troublesome scenarios , 2004, IEEE Transactions on Robotics and Automation.

[40]  Adel Al-Jumaily,et al.  A hybrid system for multi-agent exploration , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[41]  Hugh Durrant-Whyte,et al.  Simultaneous Localisation and Mapping ( SLAM ) : Part I The Essential Algorithms , 2006 .

[42]  Michael R. M. Jenkin,et al.  Computational principles of mobile robotics , 2000 .

[43]  Anthony Stentz,et al.  The Focussed D* Algorithm for Real-Time Replanning , 1995, IJCAI.

[44]  Mohinder S. Grewal,et al.  Global Positioning Systems, Inertial Navigation, and Integration , 2000 .

[45]  H. Durrant-Whyte,et al.  Simultaneous Localisation and Mapping ( SLAM ) : Part II State of the Art , 2006 .

[46]  D.A. Carnegie A Three-Tier Hierarchical Robotic System for Urban Search and Rescue Applications , 2007, 2007 IEEE International Workshop on Safety, Security and Rescue Robotics.

[47]  Robin R. Murphy,et al.  A case study of fuzzy-logic-based robot navigation , 2006, IEEE Robotics & Automation Magazine.

[48]  C. Lee-Johnson Emotion-based Parameter Modulation for a Mobile Robot Planning and Control System , 2008 .

[49]  Emmanuel G. Collins,et al.  A Comparison Between a Fuzzy Behavioral Algorithm and a Vector Polar Histogram Algorithm for Mobile Robot Navigation , 2007, 2007 International Symposium on Computational Intelligence in Robotics and Automation.

[50]  Alberto Elfes,et al.  Using occupancy grids for mobile robot perception and navigation , 1989, Computer.

[51]  Gregory Dudek,et al.  Effective exploration strategies for the construction of visual maps , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[52]  Rudolph Triebel,et al.  Three-dimensional perception for mobile robots , 2008 .

[53]  Wolfram Burgard,et al.  Collaborative multi-robot exploration , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[54]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[55]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[56]  John Weston,et al.  Strapdown Inertial Navigation Technology , 1997 .

[57]  Wolfram Burgard,et al.  Autonomous Exploration for 3D Map Learning , 2007, AMS.

[58]  Daniel Roth,et al.  Robot Programming: A Practical Guide to Behavior-Based Robotics , 2004 .