Game Theory Explorer: software for the applied game theorist

This paper presents the “Game Theory Explorer” software tool to create and analyze games as models of strategic interaction. A game in extensive or strategic form is created and nicely displayed with a graphical user interface in a web browser. State-of-the-art algorithms then compute all Nash equilibria of the game after a mouseclick. In tutorial fashion, we present how the program is used, and the ideas behind its main algorithms. We report on experiences with the architecture of the software and its development as an open-source project.

[1]  J. Nash,et al.  NON-COOPERATIVE GAMES , 1951, Classics in Game Theory.

[2]  Eitan Zemel,et al.  Nash and correlated equilibria: Some complexity considerations , 1989 .

[3]  Pierre Hansen,et al.  A New Sequence Form Approach for the Enumeration and Refinement of All Extreme Nash Equilibria for Extensive Form Games , 2009, IGTR.

[4]  K. Bagwell Commitment and observability in games , 1995 .

[5]  John C. Harsanyi,et al.  Общая теория выбора равновесия в играх / A General Theory of Equilibrium Selection in Games , 1989 .

[6]  D. Avis,et al.  Enumeration of Nash equilibria for two-player games , 2010 .

[7]  Bernhard von Stengel Rank-1 Games With Exponentially Many Nash Equilibria , 2012, ArXiv.

[8]  Andrew McLennan,et al.  Gambit: Software Tools for Game Theory , 2006 .

[9]  Martin Shubik,et al.  A theorem on the number of Nash equilibria in a bimatrix game , 1997, Int. J. Game Theory.

[10]  Pierre Hansen,et al.  Enumeration of All Extreme Equilibria of Bimatrix Games , 1996, SIAM J. Sci. Comput..

[11]  Kevin Leyton-Brown,et al.  Action-Graph Games , 2011, Games Econ. Behav..

[12]  Robert Wilson,et al.  Computing Nash equilibria by iterated polymatrix approximation , 2004 .

[13]  Nick Barnes Publish your computer code: it is good enough , 2010, Nature.

[14]  L. Shapley A note on the Lemke-Howson algorithm , 1974 .

[15]  D. Avis A Revised Implementation of the Reverse Search Vertex Enumeration Algorithm , 2000 .

[16]  Esther Hauk,et al.  On Forward Induction and Evolutionary and Strategic Stability , 1999 .

[17]  Wan Huang,et al.  Equilibrium Computation for Extensive Games , 2011 .

[18]  C. Bron,et al.  Algorithm 457: finding all cliques of an undirected graph , 1973 .

[19]  Rahul Savani,et al.  Solve a bimatrix game , 2002 .

[20]  A. Talman,et al.  Simplicial variable dimension algorithms for solving the nonlinear complementarity problem on a product of unit simplices using a general labelling , 1987 .

[21]  C. E. Lemke,et al.  Bimatrix Equilibrium Points and Mathematical Programming , 1965 .

[22]  Rahul Savani,et al.  Hard‐to‐Solve Bimatrix Games , 2006 .

[23]  Bernhard von Stengel,et al.  Computing Normal Form Perfect Equilibria for Extensive Two-Person Games , 2002 .

[24]  Ruchira S. Datta Finding all Nash equilibria of a finite game using polynomial algebra , 2006 .

[25]  Bernhard von Stengel,et al.  Exponentially many steps for finding a Nash equilibrium in a bimatrix game , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[26]  C. E. Lemke,et al.  Equilibrium Points of Bimatrix Games , 1964 .

[27]  Vincent Conitzer,et al.  New complexity results about Nash equilibria , 2008, Games Econ. Behav..

[28]  Bruce Bueno de Mesquita,et al.  An Introduction to Game Theory , 2014 .

[29]  H. W. Kuhn,et al.  11. Extensive Games and the Problem of Information , 1953 .

[30]  B. Stengel,et al.  Efficient Computation of Behavior Strategies , 1996 .

[31]  A. Balthasar Geometry and equilibria in bimatrix games , 2009 .

[32]  B. Stengel Algorithmic Game Theory: Equilibrium Computation for Two-Player Games in Strategic and Extensive Form , 2007 .

[33]  B. Stengel,et al.  COMPUTING EQUILIBRIA FOR TWO-PERSON GAMES , 1996 .

[34]  J. Mertens,et al.  ON THE STRATEGIC STABILITY OF EQUILIBRIA , 1986 .

[35]  Coenraad Bron,et al.  Finding all cliques of an undirected graph , 1973 .