A Review of Evolutionary Algorithms for Computing Functional Conformations of Protein Molecules

The ubiquitous presence of proteins in chemical pathways in the cell and their key role in many human disorders motivates a growing body of protein modeling studies to unravel the relationship between protein structure and function. The foundation of such studies is the realization that knowledge of the structures a protein accesses under physiological conditions is key to a detailed understanding of its biological function and the design of therapeutic compounds for the purpose of altering misfunction in aberrant variants of a

[1]  A. D. McLachlan,et al.  A mathematical procedure for superimposing atomic coordinates of proteins , 1972 .

[2]  C. Anfinsen Principles that govern the folding of protein chains. , 1973, Science.

[3]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[4]  N. Go,et al.  Studies on protein folding, unfolding and fluctuations by computer simulation. I. The effect of specific amino acid sequence represented by specific inter-unit interactions. , 2009 .

[5]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[6]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[7]  H. Scheraga,et al.  Monte Carlo-minimization approach to the multiple-minima problem in protein folding. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[9]  Akbar Nayeem,et al.  A comparative study of the simulated‐annealing and Monte Carlo‐with‐minimization approaches to the minimum‐energy structures of polypeptides: [Met]‐enkephalin , 1991 .

[10]  R. Unger,et al.  Finding the lowest free energy conformation of a protein is an NP-hard problem: proof and implications. , 1993, Bulletin of mathematical biology.

[11]  M. Levitt,et al.  Exploring conformational space with a simple lattice model for protein structure. , 1994, Journal of molecular biology.

[12]  J. Skolnick,et al.  Monte carlo simulations of protein folding. I. Lattice model and interaction scheme , 1994, Proteins.

[13]  R. Abagyan,et al.  Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. , 1994, Journal of molecular biology.

[14]  Ruben Abagyan,et al.  ICM—A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation , 1994, J. Comput. Chem..

[15]  A. Brünger,et al.  Torsion angle dynamics: Reduced variable conformational sampling enhances crystallographic structure refinement , 1994, Proteins.

[16]  David B. Fogel,et al.  Evolutionary computation - toward a new philosophy of machine intelligence (3. ed.) , 1995 .

[17]  D. Yee,et al.  Principles of protein folding — A perspective from simple exact models , 1995, Protein science : a publication of the Protein Society.

[18]  M. Levitt,et al.  The complexity and accuracy of discrete state models of protein structure. , 1995, Journal of molecular biology.

[19]  D Baker,et al.  Global properties of the mapping between local amino acid sequence and local structure in proteins. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[20]  A V Finkelstein,et al.  Adjusting potential energy functions for lattice models of chain molecules , 1996, Proteins.

[21]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[22]  J. Onuchic,et al.  Theory of protein folding: the energy landscape perspective. , 1997, Annual review of physical chemistry.

[23]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[24]  William E. Hart,et al.  Robust Proofs of NP-Hardness for Protein Folding: General Lattices and Energy Potentials , 1997, J. Comput. Biol..

[25]  K. Dill,et al.  From Levinthal to pathways to funnels , 1997, Nature Structural Biology.

[26]  Thomas Bäck,et al.  Evolutionary computation: Toward a new philosophy of machine intelligence , 1997, Complex..

[27]  A T Brünger,et al.  Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. , 1997, Journal of magnetic resonance.

[28]  Mihalis Yannakakis,et al.  On the Complexity of Protein Folding , 1998, J. Comput. Biol..

[29]  William M. Spears,et al.  Simple Subpopulation Schemes , 1998 .

[30]  Kalyanmoy Deb,et al.  A Niched-Penalty Approach for Constraint Handling in Genetic Algorithms , 1999, ICANNGA.

[31]  D. Borchelt,et al.  Variation in the biochemical/biophysical properties of mutant superoxide dismutase 1 enzymes and the rate of disease progression in familial amyotrophic lateral sclerosis kindreds. , 1999, Human molecular genetics.

[32]  K Yue,et al.  Predicting the structures of 18 peptides using Geocore , 1999, Protein science : a publication of the Protein Society.

[33]  N. Krasnogor,et al.  A Memetic Algorithm With Self-Adaptive Local Search: TSP as a case study , 2000, GECCO.

[34]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[35]  Ming Zhang,et al.  A New Method for Fast and Accurate Derivation of Molecular Conformations , 2002, J. Chem. Inf. Comput. Sci..

[36]  KalyanmoyDebandSamirAgrawal KanpurGeneticAlgorithmsLaboratory,et al.  A Niched-Penalty Approach for Constraint Handling in Genetic Algorithms , 2002 .

[37]  David J. Wales,et al.  Energy landscapes of model polyalanines , 2002 .

[38]  Gary B. Lamont,et al.  Solving the Protein Structure Prediction Problem Through a Multiobjective Genetic Algorithm , 2002 .

[39]  Edmund K. Burke,et al.  Multimeme Algorithms for Protein Structure Prediction , 2002, PPSN.

[40]  Alan F. Scott,et al.  Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders , 2002, Nucleic Acids Res..

[41]  David Corne,et al.  An Introduction to Bioinformatics for Computer Scientists , 2003 .

[42]  Sue Whitesides,et al.  A complete and effective move set for simplified protein folding , 2003, RECOMB '03.

[43]  José R. Álvarez,et al.  Artificial Neural Nets Problem Solving Methods , 2003, Lecture Notes in Computer Science.

[44]  David W. Corne,et al.  Use of a novel Hill-climbing genetic algorithm in protein folding simulations , 2003, Comput. Biol. Chem..

[45]  Jim Smith,et al.  Protein structure prediction with co-evolving memetic algorithms , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[46]  John A Tainer,et al.  ALS mutants of human superoxide dismutase form fibrous aggregates via framework destabilization. , 2003, Journal of molecular biology.

[47]  Claudio Soto,et al.  Unfolding the role of protein misfolding in neurodegenerative diseases , 2003, Nature Reviews Neuroscience.

[48]  Haruki Nakamura,et al.  Announcing the worldwide Protein Data Bank , 2003, Nature Structural Biology.

[49]  Carlos Cotta,et al.  Protein Structure Prediction Using Evolutionary Algorithms Hybridized with Backtracking , 2009, IWANN.

[50]  Ron Unger The Genetic Algorithm Approach to Protein Structure Prediction , 2004 .

[51]  J. Onuchic,et al.  Theory of Protein Folding This Review Comes from a Themed Issue on Folding and Binding Edited Basic Concepts Perfect Funnel Landscapes and Common Features of Folding Mechanisms , 2022 .

[52]  Andrea Tettamanzi,et al.  A Memetic Algorithm for Protein Structure Prediction in a 3D-Lattice HP Model , 2004, EvoWorkshops.

[53]  Andy J. Keane,et al.  Meta-Lamarckian learning in memetic algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[54]  Masao Iwamatsu,et al.  Basin hopping with occasional jumping , 2004 .

[55]  David Baker,et al.  Protein Structure Prediction Using Rosetta , 2004, Numerical Computer Methods, Part D.

[56]  Charles L. Brooks,et al.  Application of torsion angle molecular dynamics for efficient sampling of protein conformations , 2005, J. Comput. Chem..

[57]  Heitor Silvério Lopes,et al.  An Enhanced Genetic Algorithm for Protein Structure Prediction Using the 2D Hydrophobic-Polar Model , 2005, Artificial Evolution.

[58]  P. Bradley,et al.  Toward High-Resolution de Novo Structure Prediction for Small Proteins , 2005, Science.

[59]  V. Cutello,et al.  A multi-objective evolutionary approach to the protein structure prediction problem , 2006, Journal of The Royal Society Interface.

[60]  Jim Smith,et al.  The Co-Evolution of Memetic Algorithms for Protein Structure Prediction , 2005 .

[61]  Vincenzo Cutello,et al.  A Class of Pareto Archived Evolution Strategy Algorithms Using Immune Inspired Operators for Ab-Initio Protein Structure Prediction , 2005, EvoWorkshops.

[62]  A. Schug,et al.  Basin hopping simulations for all-atom protein folding. , 2006, The Journal of chemical physics.

[63]  Madhu Chetty,et al.  A Guided Genetic Algorithm for Protein Folding Prediction Using 3D Hydrophobic-Hydrophilic Model , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[64]  Kevin Kok Wai Wong,et al.  Classification of adaptive memetic algorithms: a comparative study , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[65]  Kenneth DeJong Evolutionary computation: a unified approach , 2007, GECCO.

[66]  Colin R. Reeves,et al.  Evolutionary computation: a unified approach , 2007, Genetic Programming and Evolvable Machines.

[67]  Hisao Ishibuchi,et al.  Special Issue on Memetic Algorithms , 2007, IEEE Trans. Syst. Man Cybern. Part B.

[68]  Joshua D. Knowles,et al.  Investigations into the Effect of Multiobjectivization in Protein Structure Prediction , 2008, PPSN.

[69]  Claudio Soto,et al.  Protein misfolding and neurodegeneration. , 2008, Archives of neurology.

[70]  Peter G Wolynes,et al.  Protein structure prediction using basin-hopping. , 2008, The Journal of chemical physics.

[71]  Hans-Joachim Böckenhauer,et al.  A Local Move Set for Protein Folding in Triangular Lattice Models , 2008, WABI.

[72]  El-Ghazali Talbi,et al.  A grid-based genetic algorithm combined with an adaptive simulated annealing for protein structure prediction , 2008, Soft Comput..

[73]  Oliver Brock,et al.  Guiding conformation space search with an all‐atom energy potential , 2008, Proteins.

[74]  William E. Hart,et al.  Recent Advances in Memetic Algorithms , 2008 .

[75]  Mireille Avigal,et al.  Genetic algorithms with local search optimization for protein structure prediction problem , 2008, GECCO '08.

[76]  D. Boehr,et al.  How Do Proteins Interact? , 2008, Science.

[77]  K. Dill,et al.  The protein folding problem. , 1993, Annual review of biophysics.

[78]  Cecilia Clementi,et al.  Coarse-grained models of protein folding: toy models or predictive tools? , 2008, Current opinion in structural biology.

[79]  Julio Ortega Lopera,et al.  Parallel Protein Structure Prediction by Multiobjective Optimization , 2009, 2009 17th Euromicro International Conference on Parallel, Distributed and Network-based Processing.

[80]  Madhu Chetty,et al.  Novel Memetic Algorithm for Protein Structure Prediction , 2009, Australasian Conference on Artificial Intelligence.

[81]  L. Kavraki,et al.  Multiscale characterization of protein conformational ensembles , 2009, Proteins.

[82]  Ting Wang,et al.  3D Protein structure prediction with genetic tabu search algorithm , 2009, 2009 Second International Symposium on Knowledge Acquisition and Modeling.

[83]  Abdul Sattar,et al.  Genetic Algorithm inAb Initio Protein Structure Prediction Using Low Resolution Model: A Review , 2009, Biomedical Data and Applications.

[84]  Vladimir N Uversky,et al.  Intrinsic disorder in proteins associated with neurodegenerative diseases. , 2009, Frontiers in bioscience.

[85]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[86]  Hisao Ishibuchi,et al.  Special issue on emerging trends in soft computing: memetic algorithms , 2009, Soft Comput..

[87]  Julio Ortega Lopera,et al.  Comparison of parallel multi-objective approaches to protein structure prediction , 2011, The Journal of Supercomputing.

[88]  Michael Levitt,et al.  Generalized ensemble methods for de novo structure prediction , 2009, Proceedings of the National Academy of Sciences.

[89]  James E. Fitzgerald,et al.  Mimicking the folding pathway to improve homology-free protein structure prediction , 2009, Proceedings of the National Academy of Sciences.

[90]  R. Nussinov,et al.  The role of dynamic conformational ensembles in biomolecular recognition. , 2009, Nature chemical biology.

[91]  Zhihong He,et al.  Protein folding simulations of 2D HP model by the genetic algorithm based on optimal secondary structures , 2010, Comput. Biol. Chem..

[92]  David Becerra,et al.  A parallel multi-objective ab initio approach for protein structure prediction , 2010, 2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).

[93]  Amarda Shehu,et al.  Guiding the Search for Native-like Protein Conformations with an Ab-initio Tree-based Exploration , 2010, Int. J. Robotics Res..

[94]  Dumitru Dumitrescu,et al.  An Evolutionary Model Based on Hill-Climbing Search Operators for Protein Structure Prediction , 2010, EvoBIO.

[95]  Giuseppe Nicosia,et al.  Robust Bio-active Peptide Prediction Using Multi-objective Optimization , 2010, 2010 International Conference on Biosciences.

[96]  Erick Fredj,et al.  A new hybrid algorithm for finding the lowest minima of potential surfaces: Approach and application to peptides , 2011, J. Comput. Chem..

[97]  Pascal Van Hentenryck,et al.  On Lattice Protein Structure Prediction Revisited , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[98]  Amarda Shehu,et al.  Populating Local Minima in the Protein Conformational Space , 2011, 2011 IEEE International Conference on Bioinformatics and Biomedicine.

[99]  Jyh-Jong Tsay,et al.  Ab initio protein structure prediction based on memetic algorithm and 3D FCC lattice model , 2011, 2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW).

[100]  C. Dobson,et al.  Protein Dynamics: Moore's Law in Molecular Biology , 2011, Current Biology.

[101]  Jens Meiler,et al.  ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. , 2011, Methods in enzymology.

[102]  Julio Ortega Lopera,et al.  PITAGORAS-PSP: Including domain knowledge in a multi-objective approach for protein structure prediction , 2011, Neurocomputing.

[103]  R. Dror,et al.  How Fast-Folding Proteins Fold , 2011, Science.

[104]  Andrew Lewis,et al.  Twin Removal in Genetic Algorithms for Protein Structure Prediction Using Low-Resolution Model , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[105]  Dumitru Dumitrescu,et al.  Hill-Climbing search and diversification within an evolutionary approach to protein structure prediction , 2011, BioData Mining.

[106]  Camelia Chira,et al.  A hybrid evolutionary approach to protein structure prediction with lattice models , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[107]  Cheng-Jian Lin,et al.  An effective hybrid of hill climbing and genetic algorithm for 2D triangular protein structure prediction , 2011, Proteome Science.

[108]  Abdul Sattar,et al.  Memory-based local search for simplified protein structure prediction , 2012, BCB.

[109]  Michele Vendruscolo,et al.  Structure of an Intermediate State in Protein Folding and Aggregation , 2012, Science.

[110]  Amarda Shehu,et al.  Evolutionary-inspired probabilistic search for enhancing sampling of local minima in the protein energy surface , 2012, Proteome Science.

[111]  Gregorio Toscano Pulido,et al.  Locality-based multiobjectivization for the HP model of protein structure prediction , 2012, GECCO '12.

[112]  Kenneth A. De Jong,et al.  A Spatial EA Framework for Parallelizing Machine Learning Methods , 2012, PPSN.

[113]  Richard O. Day,et al.  A Multiobjective Approach Applied to the Protein Structure Prediction Problem , 2012 .

[114]  Rosni Abdullah,et al.  A hybrid harmony search algorithm for ab initio protein tertiary structure prediction , 2012, Network Modeling Analysis in Health Informatics and Bioinformatics.

[115]  Gregorio Toscano Pulido,et al.  Multiobjectivizing the HP Model for Protein Structure Prediction , 2012, EvoCOP.

[116]  David Baker,et al.  The dual role of fragments in fragment‐assembly methods for de novo protein structure prediction , 2012, Proteins.

[117]  Kam Y. J. Zhang,et al.  A Probabilistic Fragment-Based Protein Structure Prediction Algorithm , 2012, PloS one.

[118]  Amarda Shehu,et al.  Efficient basin hopping in the protein energy surface , 2012, 2012 IEEE International Conference on Bioinformatics and Biomedicine.

[119]  Amarda Shehu,et al.  A population-based evolutionary algorithm for sampling minima in the protein energy surface , 2012, 2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops.

[120]  Amarda Shehu,et al.  Basin Hopping as a General and Versatile Optimization Framework for the Characterization of Biological Macromolecules , 2012, Adv. Artif. Intell..

[121]  Gang Li,et al.  Heuristic-based tabu search algorithm for folding two-dimensional AB off-lattice model proteins , 2013, Comput. Biol. Chem..

[122]  K. Lindorff-Larsen,et al.  Atomic-level description of ubiquitin folding , 2013, Proceedings of the National Academy of Sciences.

[123]  Amarda Shehu,et al.  Rapid sampling of local minima in protein energy surface and effective reduction through a multi-objective filter , 2013, Proteome Science.

[124]  Jyh-Jong Tsay,et al.  An effective evolutionary algorithm for protein folding on 3D FCC HP model by lattice rotation and generalized move sets , 2013, Proteome Science.

[125]  Amarda Shehu,et al.  A population-based evolutionary search approach to the multiple minima problem in de novo protein structure prediction , 2013, BMC Structural Biology.

[126]  Kenneth A. De Jong,et al.  Off-lattice protein structure prediction with homologous crossover , 2013, GECCO '13.

[127]  Amarda Shehu,et al.  Multi-Objective Stochastic Search for Sampling Local Minima in the Protein Energy Surface , 2013, BCB.

[128]  Takeo Kanade,et al.  Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics , 2013, Lecture Notes in Computer Science.

[129]  Brian S. Olson,et al.  Evolving local minima in the protein energy surface , 2013 .

[130]  Qiang Zhang,et al.  Enhanced hybrid search algorithm for protein structure prediction using the 3D-HP lattice model , 2013, Journal of Molecular Modeling.

[131]  Sara Reardon Large NIH projects cut , 2013, Nature.

[132]  Amarda Shehu,et al.  Elucidating the ensemble of functionally-relevant transitions in protein systems with a robotics-inspired method , 2013, BMC Structural Biology.

[133]  P. Stenson,et al.  The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine , 2013, Human Genetics.

[134]  Yang Zhang Interplay of I‐TASSER and QUARK for template‐based and ab initio protein structure prediction in CASP10 , 2014, Proteins.

[135]  Amarda Shehu,et al.  A multiscale hybrid evolutionary algorithm to obtain sample-based representations of multi-basin protein energy landscapes , 2014, BCB.

[136]  Qiang Zhang,et al.  Improved hybrid optimization algorithm for 3D protein structure prediction , 2014, Journal of Molecular Modeling.

[137]  Rommie E Amaro,et al.  Editorial overview: Theory and simulation: Tools for solving the insolvable. , 2014, Current opinion in structural biology.

[138]  Brian S. Olson,et al.  Multi-Objective Optimization Techniques for Conformational Sampling in Template-Free Protein Structure Prediction , 2014 .

[139]  Kenneth A. De Jong,et al.  Evolution Strategies for Exploring Protein Energy Landscapes , 2015, GECCO.

[140]  R. Nussinov,et al.  Allosteric effects of the oncogenic RasQ61L mutant on Raf-RBD. , 2015, Structure.

[141]  Amarda Shehu,et al.  A Data-Driven Evolutionary Algorithm for Mapping Multibasin Protein Energy Landscapes , 2015, J. Comput. Biol..

[142]  Ruth Nussinov,et al.  Mapping the Conformation Space of Wildtype and Mutant H-Ras with a Memetic, Cellular, and Multiscale Evolutionary Algorithm , 2015, PLoS Comput. Biol..

[143]  Kenneth A. De Jong,et al.  Mapping Multiple Minima in Protein Energy Landscapes with Evolutionary Algorithms , 2015, GECCO.