Harmonic Functions and Collision Probabilities

There is a close relationship between harmonic functions— which have recently been proposed for path planning—and hitting probabilities for random processes. The hitting proba bilities for random walks can be cast as a Dirichlet problem for harmonic functions, in much the same way as in path plan ning. This equivalence has implications both for uncertainty in motion planning and in the application of machine-learning techniques to some robot problems. In particular, Erdmann's method can directly incorporate such hitting probabilities. In addition, the value functions obtained by reinforcement learn ing algorithms can be rapidly reconstructed by relaxation or resistive networks, once the extrema for such functions are known.

[1]  Michael Erdmann,et al.  Randomization in Robot Tasks , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[2]  George A. Bekey,et al.  A reinforcement-learning approach to reactive control policy design for autonomous robots , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[3]  P.J. Denning,et al.  On learning how to predict , 1980, Proceedings of the IEEE.

[4]  Sebastian Thrun,et al.  Active Exploration in Dynamic Environments , 1991, NIPS.

[5]  Peter G. Doyle,et al.  Random Walks and Electric Networks: REFERENCES , 1987 .

[6]  Chris Watkins,et al.  Learning from delayed rewards , 1989 .

[7]  Edward M. Riseman,et al.  Towards cosmopolitan robots: intelligent navigation in extended man-made environments , 1987 .

[8]  Reid G. Simmons,et al.  Probabilistic Robot Navigation in Partially Observable Environments , 1995, IJCAI.

[9]  R. Weinstock Calculus of Variations: with Applications to Physics and Engineering , 1952 .

[10]  E. C. Zachmanoglou,et al.  Introduction to partial differential equations with applications , 1976 .

[11]  Jonathan Bachrach,et al.  A Connectionist Learning Control Architecture for Navigation , 1990, NIPS.

[12]  Pradeep K. Khosla,et al.  Superquadric artificial potentials for obstacle avoidance and approach , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[13]  Roderic A. Grupen,et al.  Robust Reinforcement Learning in Motion Planning , 1993, NIPS.

[14]  Peter Dayan,et al.  Navigating Through Temporal Difference , 1990, NIPS.

[15]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[16]  Norman C. Griswold,et al.  Control for mobile robots in the presence of moving objects , 1990, IEEE Trans. Robotics Autom..

[17]  Arie Hordijk,et al.  Dynamic programming and Markov potential theory , 1974 .

[18]  Bruce Randall Donald Planning Multi-Step Error Detection and Recovery Strategies , 1990, Int. J. Robotics Res..

[19]  J. Brian Burns,et al.  Path planning using Laplace's equation , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[20]  S. Sitharama Iyengar,et al.  Trajectory Planning of Robot Manipulators in Noisy Work Spaces Using Stochastic Automata , 1991, Int. J. Robotics Res..

[21]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[22]  L. Tarassenko,et al.  Analogue computation of collision-free paths , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[23]  Bartlett W. Mel Vision-based robot motion planning , 1990 .

[24]  R. Courant,et al.  Methods of Mathematical Physics, Vol. I , 1954 .

[25]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[26]  Jean-Claude Latombe,et al.  Robot Motion Planning: A Distributed Representation Approach , 1991, Int. J. Robotics Res..

[27]  Roderic A. Grupen,et al.  The applications of harmonic functions to robotics , 1993, J. Field Robotics.

[28]  R. Simmons,et al.  Probabilistic Navigation in Partially Observable Environments , 1995 .

[29]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[30]  Sridhar Mahadevan,et al.  Automatic Programming of Behavior-Based Robots Using Reinforcement Learning , 1991, Artif. Intell..

[31]  Andrew G. Barto,et al.  Monte Carlo Matrix Inversion and Reinforcement Learning , 1993, NIPS.

[32]  R. Grupen,et al.  Harmonic Control , 1992 .

[33]  Didier Keymeulen,et al.  A Reactive Robot Navigation System Based on a Fluid Dynamics Metaphor , 1990, PPSN.

[34]  Daniel E. Koditschek,et al.  Exact robot navigation by means of potential functions: Some topological considerations , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[35]  Pradeep K. Khosla,et al.  Real-time obstacle avoidance using harmonic potential functions , 1991, IEEE Trans. Robotics Autom..

[36]  Andrew W. Moore,et al.  The parti-game algorithm for variable resolution reinforcement learning in multidimensional state-spaces , 2004, Machine Learning.

[37]  Ben J. A. Kröse,et al.  Learning from delayed rewards , 1995, Robotics Auton. Syst..

[38]  Jean-Claude Latombe,et al.  Numerical potential field techniques for robot path planning , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.