Markov Random Field Modeling in Image Analysis

Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables systematic development of optimal vision algorithms when used with optimization principles. This detailed and thoroughly enhanced third edition presents a comprehensive study / reference to theories, methodologies and recent developments in solving computer vision problems based on MRFs, statistics and optimisation. It treats various problems in low- and high-level computational vision in a systematic and unified way within the MAP-MRF framework. Among the main issues covered are: how to use MRFs to encode contextual constraints that are indispensable to image understanding; how to derive the objective function for the optimal solution to a problem; and how to design computational algorithms for finding an optimal solution. Easy-to-follow and coherent, the revised edition is accessible, includes the most recent advances, and has new and expanded sections on such topics as: Discriminative Random Fields (DRF) Strong Random Fields (SRF) Spatial-Temporal Models Total Variation Models Learning MRF for Classification (motivation + DRF) Relation to Graphic Models Graph Cuts Belief Propagation Features: Focuses on the application of Markov random fields to computer vision problems, such as image restoration and edge detection in the low-level domain, and object matching and recognition in the high-level domain Presents various vision models in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation Uses a variety of examples to illustrate how to convert a specific vision problem involving uncertainties and constraints into essentially an optimization problem under the MRF setting Introduces readers to the basic concepts, important models and various special classes of MRFs on the regular image lattice and MRFs on relational graphs derived from images Examines the problems of parameter estimation and function optimization Includes an extensive list of references This broad-ranging and comprehensive volume is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It has been class-tested and is suitable as a textbook for advanced courses relating to these areas.

[1]  A. Booth Numerical Methods , 1957, Nature.

[2]  J. B. Rosen The Gradient Projection Method for Nonlinear Programming. Part I. Linear Constraints , 1960 .

[3]  J. B. Rosen The gradient projection method for nonlinear programming: Part II , 1961 .

[4]  Béla Julesz,et al.  Visual Pattern Discrimination , 1962, IRE Trans. Inf. Theory.

[5]  C. K. Chow,et al.  A Recognition Method Using Neighbor Dependence , 1962, IRE Trans. Electron. Comput..

[6]  A. A. Mullin,et al.  Principles of neurodynamics , 1962 .

[7]  B. V. Dean,et al.  Studies in Linear and Non-Linear Programming. , 1959 .

[8]  Lawrence G. Roberts,et al.  Machine Perception of Three-Dimensional Solids , 1963, Outstanding Dissertations in the Computer Sciences.

[9]  P. B. Coaker,et al.  Applied Dynamic Programming , 1964 .

[10]  Laveen N. Kanal,et al.  Classification of binary random patterns , 1965, IEEE Trans. Inf. Theory.

[11]  R. Courant Methods of mathematical physics, Volume I , 1965 .

[12]  Martin Pincus,et al.  Letter to the Editor - -A Closed Form Solution of Certain Programming Problems , 1968, Oper. Res..

[13]  M. Powell A method for nonlinear constraints in minimization problems , 1969 .

[14]  M. Hestenes Multiplier and gradient methods , 1969 .

[15]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[16]  J. M. Hammersley,et al.  Markov fields on finite graphs and lattices , 1971 .

[17]  John W. Woods,et al.  Two-dimensional discrete Markovian fields , 1972, IEEE Trans. Inf. Theory.

[18]  Martin A. Fischler,et al.  The Representation and Matching of Pictorial Structures , 1973, IEEE Transactions on Computers.

[19]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[20]  Harry G. Barrow,et al.  A Versatile Computer-Controlled Assembly System , 1973, IJCAI.

[21]  H. Akaike A new look at the statistical model identification , 1974 .

[22]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[23]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[24]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[25]  Azriel Rosenfeld,et al.  Scene Labeling by Relaxation Operations , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[26]  D. Griffeath,et al.  Introduction to Random Fields , 2020, 2007.09660.

[27]  Ashok K. Agrawala,et al.  Equivalence of Hough curve detection to template matching , 1977, Commun. ACM.

[28]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[29]  J. Besag Efficiency of pseudolikelihood estimation for simple Gaussian fields , 1977 .

[30]  Geoffrey E. Hinton Relaxation and its role in vision , 1977 .

[31]  Shmuel Peleg,et al.  Determining Compatibility Coefficients for Curve Enhancement Relaxation Processes , 1978 .

[32]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[33]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[34]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[35]  Larry S. Davis,et al.  Shape Matching Using Relaxation Techniques , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  D Marr,et al.  A computational theory of human stereo vision. , 1979, Proceedings of the Royal Society of London. Series B, Biological sciences.

[37]  T. Poggio,et al.  A computational theory of human stereo vision , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[38]  Andrew K. C. Wong,et al.  Graph Optimal Monomorphism Algorithms , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[39]  R. Chien,et al.  Motion detection and analysis of matching graphs of intermediate-level primitives , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  J. Laurie Snell,et al.  Markov Random Fields and Their Applications , 1980 .

[41]  A FischlerMartin,et al.  Random sample consensus , 1981 .

[42]  Katsushi Ikeuchi,et al.  Numerical Shape from Shading and Occluding Boundaries , 1981, Artif. Intell..

[43]  Harry G. Barrow,et al.  Interpreting Line Drawings as Three-Dimensional Surfaces , 1980, Artif. Intell..

[44]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[45]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[46]  A.K. Jain,et al.  Advances in mathematical models for image processing , 1981, Proceedings of the IEEE.

[47]  Olivier D. Faugeras,et al.  Improving Consistency and Reducing Ambiguity in Stochastic Labeling: An Optimization Approach , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Robert M. Haralick,et al.  Structural Descriptions and Inexact Matching , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Eric L. W. Grimson,et al.  From Images to Surfaces: A Computational Study of the Human Early Visual System , 1981 .

[50]  H. Barrow,et al.  Computational vision , 1981, Proceedings of the IEEE.

[51]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[52]  Adrian Bowyer,et al.  Computing Dirichlet Tessellations , 1981, Comput. J..

[53]  Olivier D. Faugeras,et al.  Semantic Description of Aerial Images Using Stochastic Labeling , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[55]  A. Siegel Robust regression using repeated medians , 1982 .

[56]  E. Jaynes On the rationale of maximum-entropy methods , 1982, Proceedings of the IEEE.

[57]  R. Chellappa,et al.  Digital image restoration using spatial interaction models , 1982 .

[58]  Andrew Blake,et al.  The least-disturbance principle and weak constraints , 1983, Pattern Recognit. Lett..

[59]  Steven W. Zucker,et al.  On the Foundations of Relaxation Labeling Processes , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[60]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[61]  Robert M. Haralick,et al.  Decision Making in Context , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[63]  Dianne P. O'Leary,et al.  Analysis of relaxation processes: The two-node two-label case , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[64]  Demetri Terzopoulos,et al.  Multilevel computational processes for visual surface reconstruction , 1983, Comput. Vis. Graph. Image Process..

[65]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[66]  J. Rissanen A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .

[67]  Stanley L. Sclove,et al.  Application of the Conditional Population-Mixture Model to Image Segmentation , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[68]  Demetri Terzopoulos,et al.  The Role of Constraints and Discontinuities in Visible-Surface Reconstruction , 1983, IJCAI.

[69]  R. Paquin,et al.  A spatio-temporal gradient method for estimating the displacement field in time-varying imagery , 1982, Computer Graphics and Image Processing.

[70]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[71]  Robert C. Bolles,et al.  3DPO: A Three- Dimensional Part Orientation System , 1986, IJCAI.

[72]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[73]  J. Ball OPTIMIZATION—THEORY AND APPLICATIONS Problems with Ordinary Differential Equations (Applications of Mathematics, 17) , 1984 .

[74]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[75]  Donald Geman,et al.  Application of the Gibbs distribution to image segmentation , 1984, ICASSP.

[76]  Thomas S. Huang,et al.  Image registration by matching relational structures , 1982, Pattern Recognit..

[77]  Donald Geman,et al.  Bayes Smoothing Algorithms for Segmentation of Binary Images Modeled by Markov Random Fields , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[78]  Bir Bhanu,et al.  Representation and Shape Matching of 3-D Objects , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[79]  Ellen C. Hildreth,et al.  Measurement of Visual Motion , 1984 .

[80]  Bernd Radig,et al.  Image sequence analysis using relational structures , 1984, Pattern Recognit..

[81]  Olivier D. Faugeras,et al.  Shape Matching of Two-Dimensional Objects , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[82]  H. Baird Model-Based Image Matching Using Location , 1985 .

[83]  Keith E. Price,et al.  Relaxation Matching Techniques-A Comparison , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[84]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[85]  José L. Marroquín,et al.  Probabilistic solution of inverse problems , 1985 .

[86]  Ramesh C. Jain,et al.  Three-dimensional object recognition , 1985, CSUR.

[87]  Andrew K. C. Wong,et al.  Entropy and Distance of Random Graphs with Application to Structural Pattern Recognition , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[88]  W. Eric L. Grimson,et al.  Discontinuity detection for visual surface reconstruction , 1985, Comput. Vis. Graph. Image Process..

[89]  M. Hebert,et al.  The Representation, Recognition, and Locating of 3-D Objects , 1986 .

[90]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[91]  Demetri Terzopoulos,et al.  Image Analysis Using Multigrid Relaxation Methods , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[92]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[93]  C Koch,et al.  Analog "neuronal" networks in early vision. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[94]  Hans-Hellmut Nagel,et al.  An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[95]  Tomaso A. Poggio,et al.  On Edge Detection , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[96]  R. H. Myers Classical and modern regression with applications , 1986 .

[97]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[98]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[99]  David B. Cooper,et al.  Simple Parallel Hierarchical and Relaxation Algorithms for Segmenting Noncausal Markovian Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[100]  W. Eric L. Grimson,et al.  Localizing Overlapping Parts by Searching the Interpretation Tree , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[101]  George C. Stockman,et al.  Object recognition and localization via pose clustering , 1987, Comput. Vis. Graph. Image Process..

[102]  Haluk Derin,et al.  Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[103]  S. Sclove Application of model-selection criteria to some problems in multivariate analysis , 1987 .

[104]  Tomaso A. Poggio,et al.  An Optimal Scale for Edge Detection , 1988, IJCAI.

[105]  Tomaso Poggio,et al.  Probabilistic Solution of Ill-Posed Problems in Computational Vision , 1987 .

[106]  Stephen T. Barnard,et al.  Stereo Matching by Hierarchical, Microcanonical Annealing , 1987, IJCAI.

[107]  Anil K. Jain,et al.  Bootstrap technique in cluster analysis , 1987, Pattern Recognit..

[108]  Jezekiel Ben-Arie,et al.  3D objects recognition by optimal matching search of multinary relations graphs , 1987, Comput. Vis. Graph. Image Process..

[109]  T. Poggio,et al.  Visual Integration and Detection of Discontinuities: The Key Role of Intensity Edges , 1987 .

[110]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[111]  David W. Murray,et al.  Scene Segmentation from Visual Motion Using Global Optimization , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[112]  Thrasyvoulos N. Pappas,et al.  An Adaptive Clustering Algorithm For Image Segmentation , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[113]  Demetri Terzopoulos,et al.  Constraints on Deformable Models: Recovering 3D Shape and Nonrigid Motion , 1988, Artif. Intell..

[114]  Rama Chellappa,et al.  Stochastic and deterministic algorithms for MAP texture segmentation , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[115]  Ruzena Bajcsy,et al.  Adaptive Image Segmentation , 1988 .

[116]  R. Fletcher Practical Methods of Optimization , 1988 .

[117]  G. Medioni,et al.  Recognizing 3-D Objects Using Surface Descriptions , 1989, [1988 Proceedings] Second International Conference on Computer Vision.

[118]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[119]  M. Bertero,et al.  Ill-posed problems in early vision , 1988, Proc. IEEE.

[120]  Terry E. Weymouth,et al.  Using Dynamic Programming For Minimizing The Energy Of Active Contours In The Presence Of Hard Constraints , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[121]  James S. Duncan,et al.  Admissibility Of Constraint Functions In Relaxation Labeling , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[122]  C. Koch,et al.  Computing motion in the presence of discontinuities: algorithm and analog networks , 1988 .

[123]  Eric Dubois,et al.  Estimation of image motion fields: Bayesian formulation and stochastic solution , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[124]  Stuart German,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1988 .

[125]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[126]  David Lee,et al.  One-Dimensional Regularization with Discontinuities , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[127]  Yehezkel Lamdan,et al.  Geometric Hashing: A General And Efficient Model-based Recognition Scheme , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[128]  Wesley E. Snyder,et al.  Range Image Restoration Using Mean Field Annealing , 1988, NIPS.

[129]  David B. Cooper,et al.  Bayesian Clustering for Unsupervised Estimation of Surface and Texture Models , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[130]  Patrick A. Kelly,et al.  Adaptive segmentation of speckled images using a hierarchical random field model , 1988, IEEE Trans. Acoust. Speech Signal Process..

[131]  D. Shulman,et al.  Regularization of discontinuous flow fields , 1989, [1989] Proceedings. Workshop on Visual Motion.

[132]  Edward J. Delp,et al.  A cost minimization approach to edge detection using simulated annealing , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[133]  D.J. Anderson,et al.  Optimal Estimation of Contour Properties by Cross-Validated Regularization , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[134]  Carsten Peterson,et al.  A New Method for Mapping Optimization Problems Onto Neural Networks , 1989, Int. J. Neural Syst..

[135]  Ramakant Nevatia,et al.  Using Perceptual Organization to Extract 3-D Structures , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[136]  W. Qian,et al.  On the use of Gibbs Markov chain models in the analysis of images based on second-order pairwise interactive distributions , 1989 .

[137]  Andrew Blake,et al.  Comparison of the Efficiency of Deterministic and Stochastic Algorithms for Visual Reconstruction , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[138]  Jun Zhang,et al.  A Markov random field model-based approach to image interpretation , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[139]  Bruce M. McMillin,et al.  A reliable parallel algorithm for relaxation labeling , 1989 .

[140]  A. R. Hanson,et al.  Robust estimation of camera location and orientation from noisy data having outliers , 1989, [1989] Proceedings. Workshop on Interpretation of 3D Scenes.

[141]  Anil K. Jain,et al.  Random field models in image analysis , 1989 .

[142]  Basilis Gidas,et al.  A Renormalization Group Approach to Image Processing Problems , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[143]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[144]  Sridhar Lakshmanan,et al.  Simultaneous Parameter Estimation and Segmentation of Gibbs Random Fields Using Simulated Annealing , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[145]  John G. Harris,et al.  Generalized smoothing networks in early vision , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[146]  C. W. Therrien,et al.  Decision, Estimation and Classification: An Introduction to Pattern Recognition and Related Topics , 1989 .

[147]  Xinhua Zhuang,et al.  Pose estimation from corresponding point data , 1989, IEEE Trans. Syst. Man Cybern..

[148]  A. Perry,et al.  Segmentation of textured images , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[149]  R. Chellappa Two-Dimensional Discrete Gaussian Markov Random Field Models for Image Processing , 1989 .

[150]  Patrick Bouthemy,et al.  A Maximum Likelihood Framework for Determining Moving Edges , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[151]  Bernard Chalmond,et al.  An iterative Gibbsian technique for reconstruction of m-ary images , 1989, Pattern Recognit..

[152]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[153]  Emile H. L. Aarts,et al.  Simulated annealing and Boltzmann machines - a stochastic approach to combinatorial optimization and neural computing , 1990, Wiley-Interscience series in discrete mathematics and optimization.

[154]  William Grimson,et al.  Object recognition by computer - the role of geometric constraints , 1991 .

[155]  Ramesh C. Jain,et al.  Using Dynamic Programming for Solving Variational Problems in Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[156]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[157]  Alan L. Yuille,et al.  Generalized Deformable Models, Statistical Physics, and Matching Problems , 1990, Neural Computation.

[158]  Anil K. Jain,et al.  MRF model-based segmentation of range images , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[159]  Jan J. Koenderink,et al.  Solid shape , 1990 .

[160]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[161]  Nasser M. Nasrabadi,et al.  Object recognition by a Hopfield neural network , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[162]  Niklas Nordström,et al.  Biased anisotropic diffusion: a unified regularization and diffusion approach to edge detection , 1990, Image Vis. Comput..

[163]  James J. Clark,et al.  Data Fusion for Sensory Information Processing Systems , 1990 .

[164]  P. Green Bayesian reconstructions from emission tomography data using a modified EM algorithm. , 1990, IEEE transactions on medical imaging.

[165]  Donald Geman,et al.  Boundary Detection by Constrained Optimization , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[166]  Isaac Weiss,et al.  Shape Reconstruction on a Varying Mesh , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[167]  Anil K. Jain,et al.  MRF model-based algorithms for image segmentation , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[168]  Paul R. Cooper,et al.  Parallel structure recognition with uncertainty: coupled segmentation and matching , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[169]  Ulf Grenander,et al.  Hands: A Pattern Theoretic Study of Biological Shapes , 1990 .

[170]  Anand Rangarajan,et al.  Generalized graduated nonconvexity algorithm for maximum a posteriori image estimation , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[171]  Jun Zhang,et al.  A Model-Fitting Approach to Cluster Validation with Application to Stochastic Model-Based Image Segmentation , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[172]  Stan Z. Li,et al.  Reconstruction without discontinuities , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[173]  Federico Girosi,et al.  Parallel and deterministic algorithms from MRFs: surface reconstruction and integration , 1990, ECCV.

[174]  Michael J. Black,et al.  A model for the detection of motion over time , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[175]  Alex Pentland,et al.  Segmentation by minimal description , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[176]  K. Lange Convergence of EM image reconstruction algorithms with Gibbs smoothing. , 1990, IEEE transactions on medical imaging.

[177]  Frederick E. Petry,et al.  Scene recognition using genetic algorithms with semantic nets , 1990, Pattern Recognit. Lett..

[178]  Joachim Dengler Estimation of Discontinuous Displacement Vector Fields with the Minimum Description Length Criterion , 1991, DAGM-Symposium.

[179]  Berthold K. P. Horn Parallel networks for machine vision , 1991 .

[180]  D. M. Titterington,et al.  A Study of Methods of Choosing the Smoothing Parameter in Image Restoration by Regularization , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[181]  John L. Wyatt,et al.  Nonlinear analog networks for image smoothing and segmentation , 1991, J. VLSI Signal Process..

[182]  Kenneth Keeler,et al.  Map representations and coding-based priors for segmentation , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[183]  Jean-Michel Jolion,et al.  Robust Clustering with Applications in Computer Vision , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[184]  W. M. Wells MAP model matching , 1991, CVPR.

[185]  Federico Girosi,et al.  Parallel and Deterministic Algorithms from MRFs: Surface Reconstruction , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[186]  Christopher J. Taylor,et al.  Model-based image interpretation using genetic algorithms , 1992, Image Vis. Comput..

[187]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[188]  M. M. Fahmy,et al.  Texture segmentation based on a hierarchical Markov random field model , 1991, 1991., IEEE International Sympoisum on Circuits and Systems.

[189]  S. Umeyama,et al.  Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[190]  John W. Woods,et al.  Compound Gauss-Markov random fields for image estimation , 1991, IEEE Trans. Signal Process..

[191]  M. A. Snyder On the Mathematical Foundations of Smoothness Constraints for the Determination of Optical Flow and for Surface Reconstruction , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[192]  Wei-Chung Lin,et al.  A hierarchical multiple-view approach to three-dimensional object recognition , 1991, IEEE Trans. Neural Networks.

[193]  Rama Chellappa,et al.  Unsupervised Texture Segmentation Using Markov Random Field Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[194]  Eric Dubois,et al.  Bayesian Estimation of Motion Vector Fields , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[195]  Azriel Rosenfeld,et al.  Compact Object Recognition Using Energy-Function-Based Optimization , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[196]  Theodosios Pavlidis,et al.  Why progress in machine vision is so slow , 1992, Pattern Recognit. Lett..

[197]  Thomas M. Breuel,et al.  Fast recognition using adaptive subdivisions of transformation space , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[198]  Il Y. Kim,et al.  Efficient image understanding based on the Markov random field model and error backpropagation network , 1992, [1992] Proceedings. 11th IAPR International Conference on Pattern Recognition.

[199]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[200]  Zhigang Fan,et al.  Maximum likelihood unsupervised textured image segmentation , 1992, CVGIP Graph. Model. Image Process..

[201]  Jun Zhang,et al.  A Markov Random Field Model-Based Approach to Image Interpretation , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[202]  M. N. M. van Lieshout,et al.  Object recognition using Markov spatial processes , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol.II. Conference B: Pattern Recognition Methodology and Systems.

[203]  Kanti V. Mardia,et al.  Statistical Shape Models in Image Analysis , 1992 .

[204]  Nikolas P. Galatsanos,et al.  Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation , 1992, IEEE Trans. Image Process..

[205]  Peng Zhang,et al.  A Highly Robust Estimator Through Partially Likelihood Function Modeling and Its Application in Computer Vision , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[206]  A. Michael Convergent gridding; a new approach to surface reconstruction , 1992 .

[207]  Kanti V. Mardia,et al.  Deformable templates in image sequences , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol.II. Conference B: Pattern Recognition Methodology and Systems.

[208]  Andrew Stein,et al.  Robust statistics in shape fitting , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[209]  Richard M. Leahy,et al.  Statistic-based MAP image-reconstruction from Poisson data using Gibbs priors , 1992, IEEE Trans. Signal Process..

[210]  S. Ziqing Li,et al.  Towards 3D vision from range images: an optimization framework and parallel distributed networks , 1992 .

[211]  James S. Duncan,et al.  Boundary Finding with Parametrically Deformable Models , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[212]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[213]  Furs-Ching Jeng,et al.  Subsampling of Markov random fields , 1992, J. Vis. Commun. Image Represent..

[214]  Narendra Ahuja,et al.  Matching Two Perspective Views , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[215]  Chiang Tzuu-Shuh,et al.  A Comparison of Simulated Annealing of Gibbs Sampler and Metropolis Algorithms , 1992 .

[216]  Stan Z. Li,et al.  Matching: Invariant to translations, rotations and scale changes , 1992, Pattern Recognit..

[217]  Stanley J. Reeves,et al.  A cross-validation framework for solving image restoration problems , 1992, J. Vis. Commun. Image Represent..

[218]  Donald Geman,et al.  A nonlinear filter for film restoration and other problems in image processing , 1992, CVGIP Graph. Model. Image Process..

[219]  Jun Zhang The mean field theory in EM procedures for Markov random fields , 1992, IEEE Trans. Signal Process..

[220]  Anil K. Jain,et al.  Parameter estimation in MRF line process models , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[221]  Chee Sun Won,et al.  Unsupervised segmentation of noisy and textured images using Markov random fields , 1992, CVGIP Graph. Model. Image Process..

[222]  Stan Z. Li,et al.  Object recognition from range data prior to segmentation , 1992, Image Vis. Comput..

[223]  Stan Z. Li,et al.  Toward 3D vision from range images: An optimization framework and parallel networks , 1991, CVGIP: Image Understanding.

[224]  William J. Christmas,et al.  Probabilistic relaxation for matching problems in computer vision , 1993, 1993 (4th) International Conference on Computer Vision.

[225]  Patrick Bouthemy,et al.  Multimodal Estimation of Discontinuous Optical Flow using Markov Random Fields , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[226]  Davi Geiger,et al.  Scaling images and image features via the renormalization group , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[227]  A. Rosenfeld Some thoughts about image modeling , 1993 .

[228]  Josiane Zerubia,et al.  Multiscale Markov random field models for parallel image classification , 1993, 1993 (4th) International Conference on Computer Vision.

[229]  Jun Zhang,et al.  The mean field theory in EM procedures for blind Markov random field image restoration , 1993, IEEE Trans. Image Process..

[230]  D. Spiegelhalter,et al.  Modelling Complexity: Applications of Gibbs Sampling in Medicine , 1993 .

[231]  J. Besag,et al.  Spatial Statistics and Bayesian Computation , 1993 .

[232]  Ken D. Sauer,et al.  A generalized Gaussian image model for edge-preserving MAP estimation , 1993, IEEE Trans. Image Process..

[233]  Michael J. Black,et al.  A framework for the robust estimation of optical flow , 1993, 1993 (4th) International Conference on Computer Vision.

[234]  Julian Besag,et al.  Towards Bayesian image analysis , 1993 .

[235]  Narendra Ahuja,et al.  Learning recognition and segmentation of 3-D objects from 2-D images , 1993, 1993 (4th) International Conference on Computer Vision.

[236]  Josef Kittler,et al.  Automatic registration of aerial photographs and digitized maps , 1993 .

[237]  David G. Lowe,et al.  Learning object recognition models from images , 1993, 1993 (4th) International Conference on Computer Vision.

[238]  Ibrahim M. Elfadel,et al.  From random fields to networks , 1993 .

[239]  Radu Horaud,et al.  Figure-Ground Discrimination: A Combinatorial Optimization Approach , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[240]  Figure-Ground Discrimination: A , 1993 .

[241]  Thomas M. Breuel,et al.  Higher-Order Statistics in Visual Object Recognition , 1993, CVPR 1993.

[242]  Kenichi Kanatani,et al.  Geometric computation for machine vision , 1993 .

[243]  M. Levine,et al.  Extracting geometric primitives , 1993 .

[244]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[245]  Michael J. Black,et al.  The outlier process: unifying line processes and robust statistics , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[246]  Michael I. Miller,et al.  REPRESENTATIONS OF KNOWLEDGE IN COMPLEX SYSTEMS , 1994 .

[247]  Stan Z. Li,et al.  Solving the bas-relief ambiguity , 1994, Proceedings of 1st International Conference on Image Processing.

[248]  Geir Storvik,et al.  A Bayesian Approach to Dynamic Contours Through Stochastic Sampling and Simulated Annealing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[249]  Stan Z. Li,et al.  A Markov random field model for object matching under contextual constraints , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[250]  Relaxation labeling of Markov random fields , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[251]  Stan Z. Li,et al.  Markov Random Field Models in Computer Vision , 1994, ECCV.

[252]  Kim L. Boyer,et al.  The Robust Sequential Estimator: A General Approach and its Application to Surface Organization in Range Data , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[253]  P. Pérez,et al.  Multiscale minimization of global energy functions in some visual recovery problems , 1994 .

[254]  Edward J. Delp,et al.  Discontinuity preserving regularization of inverse visual problems , 1994, IEEE Trans. Syst. Man Cybern..

[255]  Robert L. Stevenson,et al.  A Bayesian approach to image expansion for improved definitio , 1994, IEEE Trans. Image Process..

[256]  Josef Kittler,et al.  MFT based discrete relaxation for matching high order relational structures , 1994, Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 3 - Conference C: Signal Processing (Cat. No.94CH3440-5).

[257]  Patrick D. Surry,et al.  Formal Memetic Algorithms , 1994, Evolutionary Computing, AISB Workshop.

[258]  Fabrice Heitz,et al.  Restriction of a Markov random field on a graph and multiresolution image analysis , 1994 .

[259]  J. J. Kosowsky,et al.  Statistical Physics Algorithms That Converge , 1994, Neural Computation.

[260]  Anil K. Jain,et al.  Fusion of range and intensity images on a connection machine (CM-2) , 1995, Pattern Recognit..

[261]  Emanuele Trucco,et al.  Computer and Robot Vision , 1995 .

[262]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[263]  Roland T. Chin,et al.  Deformable Contours: Modeling and Extraction , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[264]  J. Besag,et al.  Bayesian Computation and Stochastic Systems , 1995 .

[265]  S. Li Discontinuity-adaptive Mrf Prior and Robust Statistics: a Comparative Study , 1995 .

[266]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[267]  Stan Z. Li,et al.  On Discontinuity-Adaptive Smoothness Priors in Computer Vision , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[268]  Bir Bhanu,et al.  Adaptive image segmentation using a genetic algorithm , 1989, IEEE Transactions on Systems, Man, and Cybernetics.

[269]  Stan Z. Li,et al.  Convex MRF potential functions , 1995, Proceedings., International Conference on Image Processing.

[270]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[271]  Jun Zhang,et al.  Parameter reduction for the compound Gauss-Markov model , 1995, IEEE Trans. Image Process..

[272]  Georgy L. Gimel'farb,et al.  Texture Modelling by Multiple Pairwise Pixel , 2008 .

[273]  Stan Z. Li,et al.  Robustizing robust M-estimation using deterministic annealing , 1996, Pattern Recognit..

[274]  Stan Z. Li,et al.  Improving convergence and solution quality of Hopfield-type neural networks with augmented Lagrange multipliers , 1996, IEEE Trans. Neural Networks.

[275]  Anil K. Jain,et al.  Object Matching Using Deformable Templates , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[276]  Josiane Zerubia,et al.  A Hierarchical Markov Random Field Model and Multitemperature Annealing for Parallel Image Classification , 1996, CVGIP Graph. Model. Image Process..

[277]  Song-Chun Zhu,et al.  FRAME: filters, random fields, and minimax entropy towards a unified theory for texture modeling , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[278]  P. Green,et al.  Corrigendum: On Bayesian analysis of mixtures with an unknown number of components , 1997 .

[279]  Timothy F. Cootes,et al.  Automatic Interpretation and Coding of Face Images Using Flexible Models , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[280]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[281]  Peter J. W. Rayner,et al.  Unsupervised image segmentation using Markov random field models , 1997, Pattern Recognit..

[282]  Song-Chun Zhu,et al.  Prior Learning and Gibbs Reaction-Diffusion , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[283]  Song-Chun Zhu,et al.  Minimax Entropy Principle and Its Application to Texture Modeling , 1997, Neural Computation.

[284]  Stan Z. Li,et al.  MAP image restoration and segmentation by constrained optimization , 1998, IEEE Trans. Image Process..

[285]  Anil K. Jain,et al.  Deformable template models: A review , 1998, Signal Process..

[286]  Lei Wang,et al.  Mrmrf Texture Classiication and Mcmc Parameter Estimation , 1999 .

[287]  Tafsir Thiam,et al.  The Boltzmann machine , 1999, IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339).

[288]  Dorin Comaniciu,et al.  Mean shift analysis and applications , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[289]  Stan Z. Li,et al.  Roof-edge preserving image smoothing based on MRFs , 2000, IEEE Trans. Image Process..

[290]  Refractor Vision , 2000, The Lancet.

[291]  Michael Isard,et al.  Statistical models of visual shape and motion , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[292]  Song-Chun Zhu,et al.  Learning in Gibbsian Fields: How Accurate and How Fast Can It Be? , 2002, IEEE Trans. Pattern Anal. Mach. Intell..