Synaptic physiology of the flow of information in the cat's visual cortex in vivo

Each stage of the striate cortical circuit extracts novel information about the visual environment. We asked if this analytic process reflected laminar variations in synaptic physiology by making whole‐cell recording with dye‐filled electrodes from the cat's visual cortex and thalamus; the stimuli were flashed spots. Thalamic afferents terminate in layer 4, which contains two types of cell, simple and complex, distinguished by the spatial structure of the receptive field. Previously, we had found that the postsynaptic and spike responses of simple cells reliably followed the time course of flash‐evoked thalamic activity. Here we report that complex cells in layer 4 (or cells intermediate between simple and complex) similarly reprised thalamic activity (response/trial, 99 ± 1.9 %; response duration 159 ± 57 ms; latency 25 ± 4 ms; average ± standard deviation; n= 7). Thus, all cells in layer 4 share a common synaptic physiology that allows secure integration of thalamic input. By contrast, at the second cortical stage (layer 2+3), where layer 4 directs its output, postsynaptic responses did not track simple patterns of antecedent activity. Typical responses to the static stimulus were intermittent and brief (response/trial, 31 ± 40 %; response duration 72 ± 60 ms, latency 39 ± 7 ms; n= 11). Only richer stimuli like those including motion evoked reliable responses. All told, the second level of cortical processing differs markedly from the first. At that later stage, ascending information seems strongly gated by connections between cortical neurons. Inputs must be combined in newly specified patterns to influence intracortical stages of processing.

[1]  D. Ferster Spatially opponent excitation and inhibition in simple cells of the cat visual cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  T. Sejnowski,et al.  Synaptic Interactions , 2002 .

[3]  I Fariñas,et al.  Patterns of synaptic input on corticocortical and corticothalamic cells in the cat visual cortex. I. The cell body , 1991, The Journal of comparative neurology.

[4]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[5]  J. P. Jones,et al.  The two-dimensional spatial structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[6]  Dorothy S. Russell,et al.  Pathology of Tumours of the Nervous System , 1972 .

[7]  C. Gilbert,et al.  Long‐term changes in synaptic strength along specific intrinsic pathways in the cat visual cortex. , 1993, The Journal of physiology.

[8]  I Fariñas,et al.  Patterns of synaptic input on corticocortical and corticothalamic cells in the cat visual cortex. II. The axon initial segment , 1991, The Journal of comparative neurology.

[9]  Andreas Burkhalter,et al.  Microcircuitry of forward and feedback connections within rat visual cortex , 1996, The Journal of comparative neurology.

[10]  J. Lübke,et al.  Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single ‘barrel’ of developing rat somatosensory cortex , 1999, The Journal of physiology.

[11]  C. Gilbert Laminar differences in receptive field properties of cells in cat primary visual cortex , 1977, The Journal of physiology.

[12]  P. Schwartzkroin,et al.  Electrophysiology of Hippocampal Neurons , 1987 .

[13]  A. Peters,et al.  Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. , 1993, Cerebral cortex.

[14]  A. B. Bonds,et al.  Classifying simple and complex cells on the basis of response modulation , 1991, Vision Research.

[15]  P. Heggelund Quantitative studies of enhancement and suppression zones in the receptive field of simple cells in cat striate cortex. , 1986, The Journal of physiology.

[16]  B. Sakmann,et al.  Fast and slow components of unitary EPSCs on stellate cells elicited by focal stimulation in slices of rat visual cortex. , 1992, The Journal of physiology.

[17]  A. Destexhe,et al.  Inhibitory control of somatodendritic interactions underlying action potentials in neocortical pyramidal neurons in vivo: An intracellular and computational study , 1998, Neuroscience.

[18]  K. Martin,et al.  Excitatory synaptic inputs to spiny stellate cells in cat visual cortex , 1996, Nature.

[19]  A. Thomson Activity‐dependent properties of synaptic transmission at two classes of connections made by rat neocortical pyramidal axons in vitro , 1997, The Journal of physiology.

[20]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[21]  I. Ohzawa,et al.  Local intracortical connections in the cat's visual cortex: postnatal development and plasticity. , 1994, Journal of neurophysiology.

[22]  D. Whitteridge,et al.  An intracellular analysis of the visual responses of neurones in cat visual cortex. , 1991, The Journal of physiology.

[23]  W. Almers,et al.  The Loose Patch Clamp , 1983 .

[24]  E. Kandel,et al.  ELECTROPHYSIOLOGY OF HIPPOCAMPAL NEURONS: IV. FAST PREPOTENTIALS. , 1961, Journal of neurophysiology.

[25]  D J Simons,et al.  Cortical columnar processing in the rat whisker-to-barrel system. , 1999, Journal of neurophysiology.

[26]  Philip H Smith,et al.  Coincidence Detection in the Auditory System 50 Years after Jeffress , 1998, Neuron.

[27]  O D Creutzfeldt,et al.  Whole cell recording and conductance measurements in cat visual cortex in-vivo. , 1991, Neuroreport.

[28]  D. Sholl The organization of the cerebral cortex , 1957 .

[29]  C. Koch,et al.  Synaptic background activity influences spatiotemporal integration in single pyramidal cells. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[30]  L. Palmer,et al.  Comparison of responses to moving and stationary stimuli in cat striate cortex. , 1981, Journal of neurophysiology.

[31]  G. Henry Receptive field classes of cells in the striate cortex of the cat , 1977, Brain Research.

[32]  R. Reid,et al.  The processing and encoding of information in the visual cortex , 1996, Current Opinion in Neurobiology.

[33]  R Clay Reid,et al.  Laminar processing of stimulus orientation in cat visual cortex , 2002, The Journal of physiology.

[34]  A. Burkhalter,et al.  Different Balance of Excitation and Inhibition in Forward and Feedback Circuits of Rat Visual Cortex , 1996, The Journal of Neuroscience.

[35]  C. Gilbert,et al.  Synaptic physiology of horizontal connections in the cat's visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[37]  A. Thomson,et al.  Fluctuations in pyramid-pyramid excitatory postsynaptic potentials modified by presynaptic firing pattern and postsynaptic membrane potential using paired intracellular recordings in rat neocortex , 1993, Neuroscience.

[38]  D. Whitteridge,et al.  Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. , 1984, The Journal of physiology.

[39]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[40]  R. Clay Reid,et al.  Visually evoked calcium action potentials in cat striate cortex , 1995, Nature.

[41]  Jeffrey C. Magee,et al.  Dendritic I h normalizes temporal summation in hippocampal CA 1 neurons , 1999 .

[42]  G. Henry,et al.  Laminar distribution of first-order neurons and afferent terminals in cat striate cortex. , 1979, Journal of neurophysiology.

[43]  Klein,et al.  Nonlinear directionally selective subunits in complex cells of cat striate cortex. , 1987, Journal of neurophysiology.

[44]  B. Sakmann,et al.  Single-Channel Recording , 1995, Springer US.

[45]  D. Tank,et al.  Dendritic Integration in Mammalian Neurons, a Century after Cajal , 1996, Neuron.

[46]  J. Deuchars,et al.  Synaptic interactions in neocortical local circuits: dual intracellular recordings in vitro. , 1997, Cerebral cortex.

[47]  Rob R. de Ruyter van Steveninck,et al.  The metabolic cost of neural information , 1998, Nature Neuroscience.

[48]  C. A. Gallagher,et al.  Ascending Projections of Simple and Complex Cells in Layer 6 of the Cat Striate Cortex , 1998, The Journal of Neuroscience.

[49]  J. Alonso,et al.  Functional connectivity between simple cells and complex cells in cat striate cortex , 1998, Nature Neuroscience.

[50]  BsnNr C. Srorn,et al.  CLASSIFYING SIMPLE AND COMPLEX CELLS ON THE BASIS OF RESPONSE MODULATION , 2002 .

[51]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[52]  A. M. Sillito,et al.  Non-length-tuned cells in layers II/III and IV of the visual cortex: the effect of blockade of layer VI on responses to stimuli of different lengths , 1995, Experimental Brain Research.

[53]  Gregory C. DeAngelis,et al.  Receptive-field dynamics in the central visual pathways , 1995, Trends in Neurosciences.

[54]  I. C. Whitfield,et al.  Chapter 5 – THE NEURAL CODE , 1978 .

[55]  A. Konnerth,et al.  Patch-clamping cells in sliced tissue preparations. , 1992, Methods in enzymology.

[56]  F. O. Schmitt,et al.  The Organization of the Cerebral Cortex. , 1982 .

[57]  D Ferster,et al.  Synaptic excitation of neurones in area 17 of the cat by intracortical axon collaterals of cortico‐geniculate cells. , 1985, The Journal of physiology.

[58]  R. Tsien,et al.  Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices , 1990, Nature.

[59]  J. Kauer,et al.  Whole-Cell Patch-Clamp Recording Reveals Subthreshold Sound-Evoked Postsynaptic Currents in the Inferior Colliculus of Awake Bats , 1996, The Journal of Neuroscience.

[60]  B. Connors,et al.  Apical dendrites of the neocortex: correlation between sodium- and calcium-dependent spiking and pyramidal cell morphology , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  C. Gilbert,et al.  Laminar patterns of geniculocortical projection in the cat , 1976, Brain Research.

[62]  D. Ferster,et al.  An intracellular analysis of geniculo‐cortical connectivity in area 17 of the cat. , 1983, The Journal of physiology.

[63]  WG Regehr,et al.  A quantitative analysis of presynaptic calcium dynamics that contribute to short-term enhancement , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  A. Destexhe,et al.  Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons In vivo. , 1998, Journal of neurophysiology.

[65]  B. Connors,et al.  Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. , 1999, Journal of neurophysiology.

[66]  B. Sakmann,et al.  Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[67]  L. Abbott,et al.  A Quantitative Description of Short-Term Plasticity at Excitatory Synapses in Layer 2/3 of Rat Primary Visual Cortex , 1997, The Journal of Neuroscience.

[68]  L. Palmer,et al.  The two-dimensional spatial structure of nonlinear subunits in the receptive fields of complex cells , 1990, Vision Research.

[69]  B. Katz,et al.  An analysis of the end‐plate potential recorded with an intra‐cellular electrode , 1951, The Journal of physiology.

[70]  K. Horikawa,et al.  A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates , 1988, Journal of Neuroscience Methods.

[71]  J. Movshon,et al.  Receptive field organization of complex cells in the cat's striate cortex. , 1978, The Journal of physiology.

[72]  T. Wiesel,et al.  Targets of horizontal connections in macaque primary visual cortex , 1991, The Journal of comparative neurology.

[73]  J. Stone,et al.  Conduction velocity of afferents to cat visual cortex: a correlation with cortical receptive field properties. , 1971, Brain research.

[74]  A. Destexhe,et al.  Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. , 1999, Journal of neurophysiology.

[75]  S. Levay,et al.  Synaptic patterns in the visual cortex of the cat and monkey. Electron microscopy of Golgi Preparations , 1973, The Journal of comparative neurology.

[76]  Clay Armstrong,et al.  Synaptically triggered action potentials in dendrites , 1993, Neuron.

[77]  D. Fitzpatrick The functional organization of local circuits in visual cortex: insights from the study of tree shrew striate cortex. , 1996, Cerebral cortex.

[78]  G. Henry,et al.  Ordinal position of neurons in cat striate cortex. , 1979, Journal of neurophysiology.

[79]  P. Somogyi,et al.  Target-cell-specific facilitation and depression in neocortical circuits , 1998, Nature Neuroscience.

[80]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[81]  Arnold R. Kriegstein,et al.  Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex , 1989, Journal of Neuroscience Methods.

[82]  S. Nelson,et al.  Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. , 1998, Journal of neurophysiology.

[83]  K. Tanaka Cross-correlation analysis of geniculostriate neuronal relationships in cats. , 1983, Journal of neurophysiology.

[84]  Michael Wolfe,et al.  J+ = J , 1994, ACM SIGPLAN Notices.

[85]  B. Sakmann,et al.  Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex , 1999, Nature Neuroscience.

[86]  G. Henry,et al.  Anatomical organization of the primary visual cortex (area 17) of the cat. A comparison with area 17 of the macaque monkey , 1979, The Journal of comparative neurology.

[87]  J. C. Anderson,et al.  Polyneuronal innervation of spiny stellate neurons in cat visual cortex , 1994, The Journal of comparative neurology.

[88]  J. P. Jones,et al.  Receptive-field properties and laminar distribution of X-like and Y-like simple cells in cat area 17. , 1984, Journal of neurophysiology.

[89]  L. Palmer,et al.  Temporal diversity in the lateral geniculate nucleus of cat , 1998, Visual Neuroscience.

[90]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[91]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[92]  B. Connors,et al.  Efficacy of Thalamocortical and Intracortical Synaptic Connections Quanta, Innervation, and Reliability , 1999, Neuron.

[93]  P. Schwindt,et al.  Properties of persistent sodium conductance and calcium conductance of layer V neurons from cat sensorimotor cortex in vitro. , 1985, Journal of neurophysiology.

[94]  D. Ferster,et al.  Strength and Orientation Tuning of the Thalamic Input to Simple Cells Revealed by Electrically Evoked Cortical Suppression , 1998, Neuron.

[95]  D. Ferster,et al.  EPSP-IPSP interactions in cat visual cortex studied with in vivo whole- cell patch recording , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[96]  C. Gilbert,et al.  The projections of cells in different layers of the cat's visual cortex , 1975, The Journal of comparative neurology.

[97]  A. L. Humphrey,et al.  Projection patterns of individual X‐ and Y‐cell axons from the lateral geniculate nucleus to cortical area 17 in the cat , 1985, The Journal of comparative neurology.

[98]  Nace L. Golding,et al.  Dendritic Sodium Spikes Are Variable Triggers of Axonal Action Potentials in Hippocampal CA1 Pyramidal Neurons , 1998, Neuron.

[99]  T. Wiesel,et al.  Patterns of synaptic input to layer 4 of cat striate cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[100]  C. Koch,et al.  Synaptic Background Activity Influences Spatiotemporal Integration in Single Pyramidal Cells. , 1991, The Biological bulletin.

[101]  A. M. Smith,et al.  A century after cajal. , 1993, Science.

[102]  C. Stevens,et al.  Heterogeneity of Release Probability, Facilitation, and Depletion at Central Synapses , 1997, Neuron.

[103]  J. A. Hirsch Synaptic integration in layer IV of the ferret striate cortex. , 1995, The Journal of physiology.

[104]  Winfried Denk,et al.  Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo , 1999, Nature Neuroscience.

[105]  H. Barlow,et al.  A model for the economical encoding of the visual image in cerebral cortex , 2004, Biological Cybernetics.

[106]  Keiji Tanaka Organization of geniculate inputs to visual cortical cells in the cat , 1985, Vision Research.

[107]  T. L. Davis,et al.  Microcircuitry of cat visual cortex: Classification of neurons in layer IV of area 17, and identification of the patterns of lateral geniculate input , 1979, The Journal of comparative neurology.

[108]  L. Palmer,et al.  Receptive-field structure in cat striate cortex. , 1981, Journal of neurophysiology.

[109]  C. Stevens,et al.  An evaluation of causes for unreliability of synaptic transmission. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[110]  D. Tolhurst,et al.  Spatial summation by simple cells in the striate cortex of the cat , 2004, Experimental Brain Research.