Biologically Inspired Robotics

Throughout the history of robotics research, nature has been providing numerous ideas and inspirations to robotics engineers. Small insect-like robots, for example, usually make use of reflexive behaviors to avoid obstacles during locomotion, whereas large bipedal robots are designed to control complex human-like leg for climbing up and down stairs. While providing an overview of bio-inspired robotics, this chapter particularly focus on research which aims to employ robotics systems and technologies for our deeper understanding of biological systems. Unlike most of the other robotics research where researchers attempt to develop robotic applications, these types of bio-inspired robots are generally developed to test unsolved hypotheses in biological sciences. Through close collaborations between biologists and roboticists, bio-inspired robotics research contributes not only to elucidating challenging questions in nature but also to developing novel technologies for robotics applications. In this chapter, we first provide a brief historical background of this research area and then an overview of ongoing research methodologies. A few representative case studies will detail the successful instances in which robotics technologies help identifying biological hypotheses. And finally we discuss challenges and perspectives in the field.

[1]  Marc H. Raibert,et al.  Legged Robots That Balance , 1986, IEEE Expert.

[2]  Shinya Aoi,et al.  Locomotion Control of a Biped Robot Using Nonlinear Oscillators , 2005, Auton. Robots.

[3]  Fumiya Iida,et al.  An Energy-Efficient Hopping Robot Based on Free Vibration of a Curved Beam , 2014, IEEE/ASME Transactions on Mechatronics.

[4]  Ludovic Righetti,et al.  Programmable central pattern generators: an application to biped locomotion control , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[5]  S. Grillner,et al.  Neuronal Control of LocomotionFrom Mollusc to Man , 1999 .

[6]  Auke Jan Ijspeert,et al.  Central pattern generators for locomotion control in animals and robots: A review , 2008, Neural Networks.

[7]  W. Ashby,et al.  An Introduction to Cybernetics , 1957 .

[8]  Christopher G. Langton,et al.  Artificial Life , 2019, Philosophical Posthumanism.

[9]  Hartmut Geyer,et al.  A Muscle-Reflex Model That Encodes Principles of Legged Mechanics Produces Human Walking Dynamics and Muscle Activities , 2010, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[10]  F Mondada,et al.  Social Integration of Robots into Groups of Cockroaches to Control Self-Organized Choices , 2007, Science.

[11]  Miomir Vukobratovic,et al.  Zero-Moment Point - Thirty Five Years of its Life , 2004, Int. J. Humanoid Robotics.

[12]  Martijn Wisse,et al.  Swing-Leg Retraction for Limit Cycle Walkers Improves Disturbance Rejection , 2008, IEEE Transactions on Robotics.

[13]  Arthur D. Kuo,et al.  Choosing Your Steps Carefully , 2007, IEEE Robotics & Automation Magazine.

[14]  B Mazzolai,et al.  Design of a biomimetic robotic octopus arm , 2009, Bioinspiration & biomimetics.

[15]  Emilio Kropff,et al.  Place cells, grid cells, and the brain's spatial representation system. , 2008, Annual review of neuroscience.

[16]  Reinhard Blickhan,et al.  Positive force feedback in bouncing gaits? , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[17]  Nils J. Nilsson,et al.  The Physical Symbol System Hypothesis: Status and Prospects , 2006, 50 Years of Artificial Intelligence.

[18]  T. Someya,et al.  Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Robert D. Gregg,et al.  Reduction-based Control of Three-dimensional Bipedal Walking Robots , 2010, Int. J. Robotics Res..

[20]  Jun Morimoto,et al.  Experimental Studies of a Neural Oscillator for Biped Locomotion with QRIO , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[21]  Sangbae Kim,et al.  Design and fabrication of multi-material structures for bioinspired robots , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  James Tangorra,et al.  Fish biorobotics: kinematics and hydrodynamics of self-propulsion , 2007, Journal of Experimental Biology.

[23]  Hod Lipson,et al.  Stochastic self-reconfigurable cellular robotics , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[24]  R. Wood,et al.  Meshworm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators , 2013, IEEE/ASME Transactions on Mechatronics.

[25]  Fumiya Iida,et al.  Minimalistic control of biped walking in rough terrain , 2010, Auton. Robots.

[26]  Robert J. Wood,et al.  The First Takeoff of a Biologically Inspired At-Scale Robotic Insect , 2008, IEEE Transactions on Robotics.

[27]  M. Triantafyllou,et al.  An Efficient Swimming Machine , 1995 .

[28]  Hannes Bleuler,et al.  Active tactile exploration enabled by a brain-machine-brain interface , 2011, Nature.

[29]  I. Shimoyama,et al.  Dynamic Walk of a Biped , 1984 .

[30]  Bernard Espiau,et al.  Multisensor Input for CPG-Based Sensory---Motor Coordination , 2008, IEEE Transactions on Robotics.

[31]  R. Full,et al.  The role of the mechanical system in control: a hypothesis of self-stabilization in hexapedal runners , 1999 .

[32]  Reinhard Blickhan,et al.  Compliant leg behaviour explains basic dynamics of walking and running , 2006, Proceedings of the Royal Society B: Biological Sciences.

[33]  Dario Floreano,et al.  Flying Insects and Robots , 2010 .

[34]  R. Pfeifer,et al.  Self-Organization, Embodiment, and Biologically Inspired Robotics , 2007, Science.

[35]  Gerald M Edelman,et al.  Learning in and from Brain-Based Devices , 2007, Science.

[36]  Giulio Sandini,et al.  An embedded artificial skin for humanoid robots , 2008, 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems.

[37]  Martin Buehler,et al.  Controlled passive dynamic running experiments with the ARL-monopod II , 2006, IEEE Transactions on Robotics.

[38]  F. Wörgötter,et al.  Self-organized adaptation of a simple neural circuit enables complex robot behaviour , 2010, ArXiv.

[39]  Giulio Sandini,et al.  Developmental robotics: a survey , 2003, Connect. Sci..

[40]  R. Pfeifer,et al.  A mobile robot employing insect strategies for navigation , 2000, Robotics Auton. Syst..

[41]  Michael Günther,et al.  Intelligence by mechanics , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[42]  Karl Sims,et al.  Evolving 3d morphology and behavior by competition , 1994 .

[43]  Matthew M. Williamson,et al.  Series elastic actuators , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[44]  M. Kruusmaa,et al.  A flexible fin with bio-inspired stiffness profile and geometry , 2011 .

[45]  Kiyotoshi Matsuoka,et al.  Mechanisms of frequency and pattern control in the neural rhythm generators , 1987, Biological Cybernetics.

[46]  H. Benjamin Brown,et al.  c ○ 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. RHex: A Biologically Inspired Hexapod Runner ∗ , 2022 .

[47]  Jordan B. Pollack,et al.  Automatic design and manufacture of robotic lifeforms , 2000, Nature.

[48]  Luigi Fortuna,et al.  An adaptive, self-organizing dynamical system for hierarchical control of bio-inspired locomotion , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[49]  Mark R. Cutkosky,et al.  Scaling Hard Vertical Surfaces with Compliant Microspine Arrays , 2006, Int. J. Robotics Res..

[50]  Svetha Venkatesh,et al.  How honeybees make grazing landings on flat surfaces , 2000, Biological Cybernetics.

[51]  Fumihiko Asano,et al.  Limit cycle walking, running, and skipping of telescopic-legged rimless wheel , 2012, Robotica.

[52]  Metin Sitti,et al.  Tankbot: A Palm-size, Tank-like Climbing Robot using Soft Elastomer Adhesive Treads , 2010, Int. J. Robotics Res..

[53]  Ian R. Manchester,et al.  Stable dynamic walking over uneven terrain , 2011, Int. J. Robotics Res..

[54]  Alena M. Grabowski,et al.  Leg exoskeleton reduces the metabolic cost of human hopping. , 2009, Journal of applied physiology.

[55]  Aiguo Ming,et al.  Grasping force control of multi-fingered robot hand based on slip detection using tactile sensor , 2007, 2008 IEEE International Conference on Robotics and Automation.

[56]  Andrew B. Schwartz,et al.  Brain-Controlled Interfaces: Movement Restoration with Neural Prosthetics , 2006, Neuron.

[57]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[58]  Yangsheng Xu,et al.  Climbing Strategy for a Flexible Tree Climbing Robot—Treebot , 2011, IEEE Transactions on Robotics.

[59]  Shusheng Bi,et al.  A survey of bio-inspired compliant legged robot designs , 2012, Bioinspiration & biomimetics.

[60]  José del R. Millán,et al.  Brain-Controlled Wheelchairs: A Robotic Architecture , 2013, IEEE Robotics & Automation Magazine.

[61]  Tamio Arai,et al.  Wave CPG model for autonomous decentralized multi-legged robot: Gait generation and walking speed control , 2006, Robotics Auton. Syst..

[62]  A. Ijspeert,et al.  From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model , 2007, Science.

[63]  Russ Tedrake,et al.  Efficient Bipedal Robots Based on Passive-Dynamic Walkers , 2005, Science.

[64]  T. Johnston,et al.  Genes, interactions, and the development of behavior. , 2002, Psychological review.

[65]  Jonathan Rossiter,et al.  Towards holonomic electro-elastomer actuators with six degrees of freedom , 2012 .

[66]  Ian E. Brown,et al.  A Reductionist Approach to Creating and Using Neuromusculoskeletal Models , 2000 .

[67]  Fumiya Iida,et al.  Biologically inspired visual odometer for navigation of a flying robot , 2003, Robotics Auton. Syst..

[68]  J. Horgan Josephson's Inner Junction , 1995 .

[69]  John Rieffel,et al.  Growing and Evolving Soft Robots , 2014, Artificial Life.

[70]  Hiroshi Kimura,et al.  Realization of Dynamic Walking and Running of the Quadruped Using Neural Oscillator , 1999, Auton. Robots.

[71]  Anthony G. Pipe,et al.  Whisking with robots , 2009, IEEE Robotics & Automation Magazine.

[72]  Katie Byl,et al.  Metastable Walking Machines , 2009, Int. J. Robotics Res..

[73]  R J Full,et al.  How animals move: an integrative view. , 2000, Science.

[74]  D. Floreano,et al.  Vision Tape—A Flexible Compound Vision Sensor for Motion Detection and Proximity Estimation , 2012, IEEE Sensors Journal.

[75]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[76]  Juergen Rummel,et al.  Manuscript: Stable Running with Segmented Legs ¤ , 2008 .

[77]  Daniel E. Koditschek,et al.  Biologically inspired climbing with a hexapedal robot , 2008 .

[78]  Josh Bongard,et al.  Morphological change in machines accelerates the evolution of robust behavior , 2011, Proceedings of the National Academy of Sciences.

[79]  Fumiya Iida,et al.  The challenges ahead for bio-inspired 'soft' robotics , 2012, CACM.

[80]  Masaki Ogino,et al.  Cognitive Developmental Robotics: A Survey , 2009, IEEE Transactions on Autonomous Mental Development.

[81]  Joachim Haß,et al.  Optimal Mass Distribution for Passivity-Based Bipedal Robots , 2006, Int. J. Robotics Res..

[82]  Bernard Espiau,et al.  A Study of the Passive Gait of a Compass-Like Biped Robot , 1998, Int. J. Robotics Res..

[83]  Randall D. Beer,et al.  Biologically based distributed control and local reflexes improve rough terrain locomotion in a hexapod robot , 1996, Robotics Auton. Syst..

[84]  Alfred A. Rizzi,et al.  Series compliance for an efficient running gait , 2008, IEEE Robotics & Automation Magazine.

[85]  広瀬 茂男,et al.  Biologically inspired robots : snake-like locomotors and manipulators , 1993 .

[86]  Rolf Pfeifer,et al.  Understanding intelligence , 2020, Inequality by Design.

[87]  Huai-Ti Lin,et al.  GoQBot: a caterpillar-inspired soft-bodied rolling robot , 2011, Bioinspiration & biomimetics.

[88]  R J Full,et al.  Templates and anchors: neuromechanical hypotheses of legged locomotion on land. , 1999, The Journal of experimental biology.

[89]  B. Webb,et al.  Can robots make good models of biological behaviour? , 2001, Behavioral and Brain Sciences.

[90]  R. McN. Alexander,et al.  Three Uses for Springs in Legged Locomotion , 1990, Int. J. Robotics Res..

[91]  Jun Morimoto,et al.  Learning from demonstration and adaptation of biped locomotion , 2004, Robotics Auton. Syst..

[92]  Ian D. Walker,et al.  Soft robotics: Biological inspiration, state of the art, and future research , 2008 .

[93]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[94]  Fumiya Iida,et al.  Enhanced robotic body extension with modular units , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[95]  André Frank Krause,et al.  Neuroethological Concepts and their Transfer to Walking Machines , 2003, Int. J. Robotics Res..

[96]  N. Franceschini,et al.  From insect vision to robot vision , 1992 .

[97]  Hiroshi Shimizu,et al.  Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment , 1991, Biological Cybernetics.

[98]  Akio Ishiguro,et al.  Local reflexive mechanisms essential for snakes' scaffold-based locomotion , 2012, Bioinspiration & biomimetics.

[99]  Gentaro Taga,et al.  A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance , 1998, Biological Cybernetics.

[100]  Frank Kirchner,et al.  Biomimetic walking robot SCORPION: Control and modeling , 2002, Robotics Auton. Syst..

[101]  Dario Floreano,et al.  Fly-inspired visual steering of an ultralight indoor aircraft , 2006, IEEE Transactions on Robotics.

[102]  Sangbae Kim,et al.  SpinybotII: climbing hard walls with compliant microspines , 2005, ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005..

[103]  Thomas Kindermann,et al.  Walknet--a biologically inspired network to control six-legged walking , 1998, Neural Networks.

[104]  Yasuhiro Fukuoka,et al.  Adaptive Dynamic Walking of a Quadruped Robot on Natural Ground Based on Biological Concepts , 2007, Int. J. Robotics Res..

[105]  Florentin Wörgötter,et al.  Fast Biped Walking with a Sensor-driven Neuronal Controller and Real-time Online Learning , 2006, Int. J. Robotics Res..

[106]  Tobi Delbrück,et al.  Event-Based Pixel Sensitive to Changes of Color and Brightness , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[107]  Auke Jan Ijspeert,et al.  Online Optimization of Swimming and Crawling in an Amphibious Snake Robot , 2008, IEEE Transactions on Robotics.

[108]  Florentin Wörgötter,et al.  Adaptive, Fast Walking in a Biped Robot under Neuronal Control and Learning , 2007, PLoS Comput. Biol..

[109]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[110]  Sergiy Yakovenko,et al.  Contribution of stretch reflexes to locomotor control: a modeling study , 2004, Biological Cybernetics.

[111]  Janet Wiles,et al.  Solving Navigational Uncertainty Using Grid Cells on Robots , 2010, PLoS Comput. Biol..

[112]  Filip Ilievski,et al.  Soft robotics for chemists. , 2011, Angewandte Chemie.

[113]  Vincent Hayward,et al.  Haptic interfaces and devices , 2004 .

[114]  Rolf Pfeifer,et al.  Morpho-functional machines : the new species : designing embodied intelligence , 2003 .

[115]  Ronald S. Fearing,et al.  Basic solid mechanics for tactile sensing , 1984, ICRA.

[116]  R. A. Brooks,et al.  Intelligence without Representation , 1991, Artif. Intell..

[117]  Akio Ishiguro,et al.  A 2-D Passive-Dynamic-Running Biped With Elastic Elements , 2011, IEEE Transactions on Robotics.

[118]  Andrew Adamatzky,et al.  Artificial Life Models in Hardware , 2009 .

[119]  Satoshi Murata,et al.  Self-reconfigurable robots , 2007, IEEE Robotics & Automation Magazine.

[120]  Fumiya Iida,et al.  Bipedal walking and running with spring-like biarticular muscles. , 2008, Journal of biomechanics.

[121]  S. Grillner,et al.  Neuronal Control of Locomotion 'From Mollusc to Man ' , 1999 .

[122]  Gerald M Edelman,et al.  Characterizing functional hippocampal pathways in a brain-based device as it solves a spatial memory task. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[123]  Eric Klavins,et al.  A grammatical approach to self-organizing robotic systems , 2006, IEEE Transactions on Automatic Control.

[124]  Ralf Möller,et al.  Insect visual homing strategies in a robot with analog processing , 2000, Biological Cybernetics.

[125]  P. Dario,et al.  A Mechanism for Biomimetic Actuation in Lamprey-like Robots , 2006, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006..

[126]  Kenichi Narioka,et al.  Motor development of an pneumatic musculoskeletal infant robot , 2011, 2011 IEEE International Conference on Robotics and Automation.

[127]  V. Braitenberg Vehicles, Experiments in Synthetic Psychology , 1984 .