Multi‐group motion planning in virtual environments

Toward enhancing automation, this paper proposes an efficient approach for multi‐group motion planning, where the set of goals is divided into k groups and the objective is to compute a collision‐free and dynamically feasible trajectory that enables a virtual vehicle to reach at least one goal from each group. The approach works with ground and aerial vehicles operating in complex environments containing numerous obstacles. In addition to modeling the vehicle dynamics by differential equations, the approach can use physics‐based game engines, which provide an increased level of realism. The approach is based on a hybrid search that uses generalized traveling salesman tours over a probabilistic roadmap to effectively guide the sampling‐based expansion of a motion tree. As the motion tree is expanded with collision‐free and dynamically feasible trajectories, tours are adjusted based on a partition of the motion tree into equivalence classes. This gives the approach the flexibility to discover new tours that avoid collisions and are compatible with the vehicle dynamics. Comparisons to related work show significant improvements both in terms of runtime and solution length. Copyright © 2016 John Wiley & Sons, Ltd.

[1]  Norman I. Badler,et al.  Path planning for coherent and persistent groups , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[2]  Benjamin W. Wah,et al.  Transformation of the generalized traveling-salesman problem into the standard traveling-salesman problem , 1993, Inf. Sci..

[3]  D. Hunter Hale,et al.  Influence points for tactical information in navigation meshes , 2009, FDG.

[4]  Marcelo Kallmann Navigation Queries from Triangular Meshes , 2010, MIG.

[5]  Nathan R. Sturtevant,et al.  Enhanced Partial Expansion A , 2014, J. Artif. Intell. Res..

[6]  Nancy M. Amato,et al.  Roadmap-Based Level Clearing of Buildings , 2011, MIG.

[7]  Stefan Edelkamp,et al.  Multi-goal motion planning with physics-based game engines , 2014, 2014 IEEE Conference on Computational Intelligence and Games.

[8]  Erion Plaku Planning in Discrete and Continuous Spaces: From LTL Tasks to Robot Motions , 2012, TAROS.

[9]  Sven Koenig,et al.  On the Traveling Salesman Problem with Simple Temporal Constraints , 2013, SARA.

[10]  Jur P. van den Berg,et al.  Planning Near-Optimal Corridors Amidst Obstacles , 2006, WAFR.

[11]  Sergey Brin,et al.  Near Neighbor Search in Large Metric Spaces , 1995, VLDB.

[12]  Franz S. Hover,et al.  Sampling-Based Coverage Path Planning for Inspection of Complex Structures , 2012, ICAPS.

[13]  Mark H. Overmars,et al.  The corridor map method: a general framework for real‐time high‐quality path planning , 2007, Comput. Animat. Virtual Worlds.

[14]  Stefan Edelkamp,et al.  Solving Physical Traveling Salesman Problems with policy adaptation , 2014, 2014 IEEE Conference on Computational Intelligence and Games.

[15]  Roland Geraerts,et al.  GPGPU-accelerated construction of high-resolution generalized voronoi diagrams and navigation meshes , 2014, MIG.

[16]  Lydia E. Kavraki,et al.  Randomized planning for short inspection paths , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[17]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[18]  Erion Plaku,et al.  Robot motion planning with task specifications via regular languages , 2015, Robotica.

[19]  Nicholas M. Patrikalakis,et al.  Asymptotically optimal inspection planning using systems with differential constraints , 2013, 2013 IEEE International Conference on Robotics and Automation.

[20]  Simon M. Lucas,et al.  The physical travelling salesman problem: WCCI 2012 competition , 2012, 2012 IEEE Congress on Evolutionary Computation.

[21]  Dan Halperin,et al.  k-color multi-robot motion planning , 2012, Int. J. Robotics Res..

[22]  Steven M. LaValle,et al.  Motion Planning : The Essentials , 2011 .

[23]  Marcelo Kallmann,et al.  Dynamic and Robust Local Clearance Triangulations , 2014, ACM Trans. Graph..

[24]  Erion Plaku,et al.  Sampling-based tree search with discrete abstractions for motion planning with dynamics and temporal logic , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  Steven M. LaValle,et al.  Motion Planning Part I: The Essentials , 2011 .

[26]  Stefan Edelkamp,et al.  Motion planning with rigid-body dynamics for generalized traveling salesman tours , 2014, MIG.

[27]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[28]  Dinesh Manocha,et al.  Reciprocal Velocity Obstacles for real-time multi-agent navigation , 2008, 2008 IEEE International Conference on Robotics and Automation.

[29]  Petros Faloutsos,et al.  Situation agents: agent‐based externalized steering logic , 2010, Comput. Animat. Virtual Worlds.

[30]  Glenn Reinman,et al.  Footstep navigation for dynamic crowds , 2011, SI3D.

[31]  Jonathan Richard Shewchuk,et al.  Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..

[32]  Roland Geraerts,et al.  Planning short paths with clearance using explicit corridors , 2010, 2010 IEEE International Conference on Robotics and Automation.

[33]  Marcelo Kallmann,et al.  Navigation meshes and real-time dynamic planning for virtual worlds , 2014, SIGGRAPH '14.

[34]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[35]  Daniel Vallejo,et al.  OBPRM: an obstacle-based PRM for 3D workspaces , 1998 .

[36]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[37]  Moshe Y. Vardi,et al.  Motion Planning with Complex Goals , 2011, IEEE Robotics & Automation Magazine.

[38]  Petros Faloutsos,et al.  Egocentric affordance fields in pedestrian steering , 2009, I3D '09.

[39]  Keld Helsgaun,et al.  General k-opt submoves for the Lin–Kernighan TSP heuristic , 2009, Math. Program. Comput..

[40]  Jean-Claude Latombe,et al.  Motion Planning: A Journey of Robots, Molecules, Digital Actors, and Other Artifacts , 1999, Int. J. Robotics Res..

[41]  Kurt Mehlhorn,et al.  Faster algorithms for the shortest path problem , 1990, JACM.

[42]  Tim Roughgarden,et al.  Planning Tours of Robotic Arms among Partitioned Goals , 2006, Int. J. Robotics Res..

[43]  David Hsu,et al.  The bridge test for sampling narrow passages with probabilistic roadmap planners , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[44]  J.-P. Laumond,et al.  Towards a software development kit for motion synthesis in virtual worlds , 2001, Proceedings Seventh International Conference on Virtual Systems and Multimedia.

[45]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning with deterministic μ-calculus specifications , 2012, 2012 American Control Conference (ACC).

[46]  Simon M. Lucas,et al.  Solving the Physical Traveling Salesman Problem: Tree Search and Macro Actions , 2014, IEEE Transactions on Computational Intelligence and AI in Games.

[47]  Vadim Bulitko,et al.  Database-Driven Real-Time Heuristic Search in Video-Game Pathfinding , 2013, IEEE Transactions on Computational Intelligence and AI in Games.

[48]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[49]  Simon Parsons,et al.  Principles of Robot Motion: Theory, Algorithms and Implementations by Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun, 603 pp., $60.00, ISBN 0-262-033275 , 2007, The Knowledge Engineering Review.

[50]  Mark de Berg,et al.  Computational geometry: algorithms and applications, 3rd Edition , 1997 .

[51]  Teofilo F. GONZALEZ,et al.  Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..