Rapid Arrival and Integration of Ascending Sensory Information in Layer 1 Nonpyramidal Neurons and Tuft Dendrites of Layer 5 Pyramidal Neurons of the Neocortex

Ascending sensory inputs arriving in layer 1 of the neocortex carry crucial signals for detecting salient information; but how the inputs are processed in layer 1 is unknown. Using a whole-cell in vivo recording technique targeting nonpyramidal neurons in layer 1 and tuft dendrites of layer 5 pyramidal neurons in layers 1-2, we examined the processing of these ascending sensory inputs in the barrel cortex. Here, we show that local circuit and deeper-layer-projecting neurons in layer 1, as well as tuft dendrites and somata of layer 5 pyramidal neurons, respond to multiple whiskers (6-15) with robust EPSPs. Remarkably, the latency for primary whisker-evoked responses is as short as ∼5-7 msec in layer 1 neurons and tuft dendrites of layer 5 pyramidal neurons. In addition, the latency for primary whisker-evoked responses in tuft dendrites of layer 5 pyramidal neurons is ∼1 msec shorter than that in somata. These results indicate that ascending sensory inputs arrive in layers 1 and 4 concurrently, which provides a neural mechanism for rapid integration and coincident detection of salient sensory information.

[1]  Andreas Burkhalter,et al.  Distinct GABAergic Targets of Feedforward and Feedback Connections Between Lower and Higher Areas of Rat Visual Cortex , 2003, The Journal of Neuroscience.

[2]  B. Sakmann,et al.  Dynamic Receptive Fields of Reconstructed Pyramidal Cells in Layers 3 and 2 of Rat Somatosensory Barrel Cortex , 2003, The Journal of physiology.

[3]  A. Grinvald,et al.  Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Kevin Fox,et al.  The Origin of Cortical Surround Receptive Fields Studied in the Barrel Cortex , 2003, The Journal of Neuroscience.

[5]  D. Watanabe,et al.  Segregation and Coactivation of Developing Neocortical Layer 1 Neurons , 2003, The Journal of Neuroscience.

[6]  Bartlett W. Mel,et al.  Dendrites: bug or feature? , 2003, Current Opinion in Neurobiology.

[7]  H. Lüscher,et al.  Timing and precision of spike initiation in layer V pyramidal cells of the rat somatosensory cortex. , 2003, Cerebral cortex.

[8]  S. Hestrin,et al.  Synaptic Interactions of Late-Spiking Neocortical Neurons in Layer 1 , 2003, The Journal of Neuroscience.

[9]  P. Heggelund,et al.  Postnatal development of GABAergic signalling in the rat lateral geniculate nucleus: presynaptic dendritic mechanisms , 2003, The Journal of physiology.

[10]  Serge Charpak,et al.  Two types of nicotinic receptors mediate an excitation of neocortical layer I interneurons. , 2002, Journal of neurophysiology.

[11]  M. Larkum,et al.  Signaling of Layer 1 and Whisker-Evoked Ca2+ and Na+ Action Potentials in Distal and Terminal Dendrites of Rat Neocortical Pyramidal Neurons In Vitro and In Vivo , 2002, The Journal of Neuroscience.

[12]  J. Lübke,et al.  Axonal Projection, Input and Output Synapses, and Synaptic Physiology of Cajal–Retzius Cells in the Developing Rat Neocortex , 2002, The Journal of Neuroscience.

[13]  B. Sakmann,et al.  ‐Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex , 2002, The Journal of physiology.

[14]  K. Fox,et al.  Anatomical pathways and molecular mechanisms for plasticity in the barrel cortex , 2002, Neuroscience.

[15]  R. Llinás,et al.  Temporal binding via cortical coincidence detection of specific and nonspecific thalamocortical inputs: A voltage-dependent dye-imaging study in mouse brain slices , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[16]  L. Cauller,et al.  Corticocortical and thalamocortical projections to layer I of the frontal neocortex in rats , 2001, Brain Research.

[17]  E. G. Jones,et al.  The thalamic matrix and thalamocortical synchrony , 2001, Trends in Neurosciences.

[18]  K. Svoboda,et al.  Rapid Development and Plasticity of Layer 2/3 Maps in Rat Barrel Cortex In Vivo , 2001, Neuron.

[19]  G. Tamás,et al.  β and γ Frequency Synchronization by Dendritic GABAergic Synapses and Gap Junctions in a Network of Cortical Interneurons , 2001, The Journal of Neuroscience.

[20]  B. Sakmann,et al.  Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons , 2001, The Journal of physiology.

[21]  M. Nicolelis,et al.  Feature article: the structure and function of dynamic cortical and thalamic receptive fields. , 2001, Cerebral cortex.

[22]  D. Ferster,et al.  The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. , 2000, Science.

[23]  J. Winer,et al.  Auditory thalamocortical projections in the cat: Laminar and areal patterns of input , 2000, The Journal of comparative neurology.

[24]  B. Connors,et al.  A network of electrically coupled interneurons drives synchronized inhibition in neocortex , 2000, Nature Neuroscience.

[25]  J. Zhu,et al.  Maturation of layer 5 neocortical pyramidal neurons: amplifying salient layer 1 and layer 4 inputs by Ca2+ action potentials in adult rat tuft dendrites , 2000, The Journal of physiology.

[26]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[27]  Stephen R. Williams,et al.  Mechanisms and consequences of action potential burst firing in rat neocortical pyramidal neurons , 1999, The Journal of physiology.

[28]  D. Tank,et al.  In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons , 1999, Nature Neuroscience.

[29]  M A Nicolelis,et al.  Spatiotemporal properties of layer V neurons of the rat primary somatosensory cortex. , 1999, Cerebral cortex.

[30]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[31]  B. Connors,et al.  Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. , 1999, Journal of neurophysiology.

[32]  S. Nelson,et al.  Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. , 1998, Journal of neurophysiology.

[33]  J J Zhu,et al.  Control of recurrent inhibition of the lateral posterior-pulvinar complex by afferents from the deep layers of the superior colliculus of the rabbit. , 1998, Journal of neurophysiology.

[34]  M. Horne,et al.  Arborisation and termination of single motor thalamocortical axons in the rat , 1998, The Journal of comparative neurology.

[35]  G. Buzsáki,et al.  Dendritic Spikes Are Enhanced by Cooperative Network Activity in the Intact Hippocampus , 1998, The Journal of Neuroscience.

[36]  J. Lisman Bursts as a unit of neural information: making unreliable synapses reliable , 1997, Trends in Neurosciences.

[37]  F. Zhou,et al.  Morphological properties of intracellularly labeled layer I neurons in rat neocortex , 1996, The Journal of comparative neurology.

[38]  S. Hestrin,et al.  Morphology and Physiology of Cortical Neurons in Layer I , 1996, The Journal of Neuroscience.

[39]  JJ Hablitz,et al.  Postnatal development of membrane properties of layer I neurons in rat neocortex , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  Y. Kawaguchi Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  V. Casagrande A third parallel visual pathway to primate area V1 , 1994, Trends in Neurosciences.

[42]  J. Winer,et al.  Morphology and spatial distribution of GABAergic neurons in cat primary auditory cortex (AI) , 1994, The Journal of comparative neurology.

[43]  H. Schwark,et al.  Distribution and proportions of GABA‐Immunoreactive neurons in cat primary somatosensory cortex , 1994, The Journal of comparative neurology.

[44]  T. Yoshioka,et al.  A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. , 1994, Science.

[45]  L. Cauller,et al.  Synaptic physiology of horizontal afferents to layer I in slices of rat SI neocortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  M. Ito Simultaneous visualization of cortical barrels and horseradish peroxidase‐injected layer 5b vibrissa neurones in the rat. , 1992, The Journal of physiology.

[47]  F. Ebner,et al.  Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus: Dependence on the barrel field cortex , 1992, The Journal of comparative neurology.

[48]  S. Petersen,et al.  The pulvinar and visual salience , 1992, Trends in Neurosciences.

[49]  M. Glickstein Cajal on the cerebral cortex: an annotated translation of the complete writings , 1991, Medical History.

[50]  E. G. Jones,et al.  Chemically distinct compartments of the thalamic VPM nucleus in monkeys relay principal and spinal trigeminal pathways to different layers of the somatosensory cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  M Marín-Padilla,et al.  Three‐dimensional structural organization of layer I of the human cerebral cortex: A golgi study , 1990, The Journal of comparative neurology.

[52]  M. J. Friedlander,et al.  Physiological, morphological, and cytochemical characteristics of a layer 1 neuron in cat striate cortex , 1989, The Journal of comparative neurology.

[53]  Larry W. Swanson,et al.  Cajal on the Cerebral Cortex: An Annotated Translation of the Complete Writings , 1988 .

[54]  V. Casagrande,et al.  Contrast-sensitivity functions of W-, X-, and Y-like relay cells in the lateral geniculate nucleus of bush baby, Galago crassicaudatus. , 1988, Journal of neurophysiology.

[55]  D. Simons,et al.  Membrane potential changes in rat SmI cortical neurons evoked by controlled stimulation of mystacial vibrissae , 1988, Brain Research.

[56]  M. Armstrong‐James,et al.  Spatiotemporal convergence and divergence in the rat S1 “Barrel” cortex , 1987, The Journal of comparative neurology.

[57]  J. Chapin,et al.  Mapping the body representation in the SI cortex of anesthetized and awake rats , 1984, The Journal of comparative neurology.

[58]  D. Simons Multi-whisker stimulation and its effects on vibrissa units in rat Sml barrel cortex , 1983, Brain Research.

[59]  K. Itoh,et al.  Cells of different sizes in the ventral nuclei project to different layers of the somatic cortex in the cat , 1982, Brain Research.

[60]  M Sur,et al.  Linear and nonlinear W-cells in C-laminae of the cat's lateral geniculate nucleus. , 1982, Journal of neurophysiology.

[61]  M. Herkenham Laminar organization of thalamic projections to the rat neocortex. , 1980, Science.

[62]  M. Herkenham The afferent and efferent connections of the ventromedial thalamic nucleus in the rat , 1979, The Journal of comparative neurology.

[63]  A. Lieberman,et al.  Neurons in layer I of the developing occipital cortex of the rat , 1977, The Journal of comparative neurology.

[64]  R. Dykes,et al.  Somatotopic projections of mystacial vibrissae on cerebral cortex of cats. , 1977, Journal of neurophysiology.

[65]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[66]  L. Cauller,et al.  The neural basis of the behaviorally relevant N1 component of the somatosensory-evoked potential in SI cortex of awake monkeys: evidence that backward cortical projections signal conscious touch sensation , 2004, Experimental Brain Research.

[67]  R. Dykes,et al.  Morphological and electrophysiological characteristics of somatosensory thalamocortical axons studied with intra-axonal staining and recording in the cat , 2004, Experimental Brain Research.

[68]  A. Reyes,et al.  Influence of dendritic conductances on the input-output properties of neurons. , 2001, Annual review of neuroscience.

[69]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[70]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[71]  N. Wittenburg,et al.  Transformation from temporal to rate coding in a somatosensory thalamocortical pathway , 2022 .

[72]  Heinke,et al.  Spike Transmission and Synchrony Detection in Networks of GABAergic Interneurons , 2022 .