Visual spatial characterization of macaque V1 neurons.

This study characterizes the spatial organization of excitation and inhibition that influences the visual responses of neurons in macaque monkey's primary visual cortex (V1). To understand the spatial extent of excitatory and inhibitory influences on V1 neurons, we performed area-summation experiments with suprathreshold contrast stimulation. The extent of spatial summation and the magnitude of surround suppression were estimated quantitatively by analyzing the spatial summation experiments with a difference of Gaussians (DOG) model. The average extent of spatial summation is approximately the same across layers except for layer 6 cells, which tend to sum more extensively than cells in the other layers. On average, the extent of length and width summation is approximately equal. Across the population, surround suppression is greatest in layer 4B and weakest in layer 6. Estimates of summation and suppression are compared for the DOG (subtractive) model and a normalization (divisive) model. The two models yield quantitatively similar estimates of the extent of excitation and inhibition. However, the normalization (divisive) model predicts weaker surround strength than the DOG model.

[1]  John Edward Lennard-Jones,et al.  The determination of molecular orbitals , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[3]  D. Hubel,et al.  Binocular interaction in striate cortex of kittens reared with artificial squint. , 1965, Journal of neurophysiology.

[4]  R. W. Rodieck,et al.  Analysis of receptive fields of cat retinal ganglion cells. , 1965, Journal of neurophysiology.

[5]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[6]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[7]  B. Dreher Hypercomplex cells in the cat's striate cortex. , 1972, Investigative ophthalmology.

[8]  B. Dow Functional classes of cells and their laminar distribution in monkey visual cortex. , 1974, Journal of neurophysiology.

[9]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. , 1976, Journal of neurophysiology.

[10]  L. Maffei,et al.  The unresponsive regions of visual cortical receptive fields , 1976, Vision Research.

[11]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. II. Orientation specificity and ocular dominance. , 1976, Journal of neurophysiology.

[12]  D. Pollen,et al.  Responses of complex cells in the visual cortex of the cat as a function of the length of moving slits , 1976, Brain Research.

[13]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[14]  C. Gilbert Laminar differences in receptive field properties of cells in cat primary visual cortex , 1977, The Journal of physiology.

[15]  D. Rose Responses of single units in cat visual cortex to moving bars of light as a function of bar length , 1977, The Journal of physiology.

[16]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[17]  J. Nelson,et al.  Orientation-selective inhibition from beyond the classic visual receptive field , 1978, Brain Research.

[18]  M. Ogren,et al.  The neurological organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in old world and new world primates , 1978, The Journal of comparative neurology.

[19]  J. Movshon,et al.  Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. , 1978, The Journal of physiology.

[20]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[21]  Eldridge Jl A reversible ophthalmoscope using a corner-cube [proceedings]. , 1979 .

[22]  E Vandenbussche,et al.  Behavioural evidence for the oblique effect in the cat [proceedings]. , 1979, The Journal of physiology.

[23]  P. O. Bishop,et al.  End-zone region in receptive fields of hypercomplex and other striate neurons in the cat. , 1979, Journal of neurophysiology.

[24]  A. P. Petrov,et al.  Some evidence against Fourier analysis as a function of the receptive fields in cat's striate cortex , 1980, Vision Research.

[25]  S Marcelja,et al.  Mathematical description of the responses of simple cortical cells. , 1980, Journal of the Optical Society of America.

[26]  D. Burr,et al.  Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[27]  R. Shapley,et al.  X and Y cells in the lateral geniculate nucleus of macaque monkeys. , 1982, The Journal of physiology.

[28]  R. L. Valois,et al.  The orientation and direction selectivity of cells in macaque visual cortex , 1982, Vision Research.

[29]  C. Enroth-Cugell,et al.  Receptive field properties of X and Y cells in the cat retina derived from contrast sensitivity measurements , 1982, Vision Research.

[30]  J. Lund,et al.  Intrinsic laminar lattice connections in primate visual cortex , 1983, The Journal of comparative neurology.

[31]  K. D. De Valois,et al.  Spatial‐frequency‐specific inhibition in cat striate cortex cells. , 1983, The Journal of physiology.

[32]  G. Blasdel,et al.  Termination of afferent axons in macaque striate cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  G. Blasdel,et al.  Physiological organization of layer 4 in macaque striate cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[35]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[36]  D. Hubel,et al.  Specificity of intrinsic connections in primate primary visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[38]  D. Pollen,et al.  Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. , 1985, The Journal of physiology.

[39]  G. Blasdel,et al.  Intrinsic connections of macaque striate cortex: afferent and efferent connections of lamina 4C , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  D. G. Albrecht,et al.  Periodicity of striate-cortex-cell receptive fields. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[41]  J. Allman,et al.  Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. , 1985, Annual review of neuroscience.

[42]  D. Field,et al.  The structure and symmetry of simple-cell receptive-field profiles in the cat’s visual cortex , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[43]  C. Gilbert,et al.  Generation of end-inhibition in the visual cortex via interlaminar connections , 1986, Nature.

[44]  D. Ferster Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[46]  A. Parker,et al.  Spatial properties of neurons in the monkey striate cortex , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[47]  I. Ohzawa,et al.  Simple cells in the visual cortex of the cat can be narrowly tuned for spatial frequency , 1988, Visual Neuroscience.

[48]  M. Hawken,et al.  Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  A. B. Bonds Role of Inhibition in the Specification of Orientation Selectivity of Cells in the Cat Striate Cortex , 1989, Visual Neuroscience.

[50]  D G Stork,et al.  Do Gabor functions provide appropriate descriptions of visual cortical receptive fields? , 1990, Journal of the Optical Society of America. A, Optics and image science.

[51]  I. Ohzawa,et al.  Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. , 1990, Science.

[52]  A. B. Bonds,et al.  Inhibitory refinement of spatial frequency selectivity in single cells of the cat striate cortex , 1991, Vision Research.

[53]  R. Born,et al.  Single-unit and 2-deoxyglucose studies of side inhibition in macaque striate cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[54]  D. G. Albrecht,et al.  Motion selectivity and the contrast-response function of simple cells in the visual cortex , 1991, Visual Neuroscience.

[55]  D. V. van Essen,et al.  Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. , 1992, Journal of neurophysiology.

[56]  R. von der Heydt,et al.  Periodic-pattern-selective cells in monkey visual cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  D. Heeger Half-squaring in responses of cat striate cells , 1992, Visual Neuroscience.

[58]  I. Ohzawa,et al.  Organization of suppression in receptive fields of neurons in cat visual cortex. , 1992, Journal of neurophysiology.

[59]  C. Li,et al.  Extensive integration field beyond the classical receptive field of cat's striate cortical neurons--classification and tuning properties. , 1994, Vision research.

[60]  I. Ohzawa,et al.  Length and width tuning of neurons in the cat's primary visual cortex. , 1994, Journal of neurophysiology.

[61]  M. Carandini,et al.  Summation and division by neurons in primate visual cortex. , 1994, Science.

[62]  D. Snodderly,et al.  Organization of striate cortex of alert, trained monkeys (Macaca fascicularis): ongoing activity, stimulus selectivity, and widths of receptive field activating regions. , 1995, Journal of neurophysiology.

[63]  A. Leventhal,et al.  Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  H. Jones,et al.  Visual cortical mechanisms detecting focal orientation discontinuities , 1995, Nature.

[65]  C. Gilbert,et al.  Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys , 1995, Neuron.

[66]  Anthony J. Movshon,et al.  Visual Response Properties of Striate Cortical Neurons Projecting to Area MT in Macaque Monkeys , 1996, The Journal of Neuroscience.

[67]  R. Shapley,et al.  Temporal-frequency selectivity in monkey visual cortex , 1996, Visual Neuroscience.

[68]  H. Tamura,et al.  Mechanisms underlying orientation selectivity of neurons in the primary visual cortex of the macaque. , 1996, The Journal of physiology.

[69]  M. Carandini,et al.  Predictions of a recurrent model of orientation selectivity , 1997, Vision Research.

[70]  D. Heeger,et al.  Modeling the Apparent Frequency-specific Suppression in Simple Cell Responses , 1997, Vision Research.

[71]  D. Heeger,et al.  Comparison of contrast-normalization and threshold models of the responses of simple cells in cat striate cortex , 1997, Visual Neuroscience.

[72]  L. P. O'Keefe,et al.  Adaptation to Contingencies in Macaque Primary Visual Cortex , 1997 .

[73]  J. B. Levitt,et al.  Contrast dependence of contextual effects in primate visual cortex , 1997, nature.

[74]  D. Heeger,et al.  Contrast normalization and a linear model for the directional selectivity of simple cells in cat striate cortex , 1997, Visual Neuroscience.

[75]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[76]  E M Callaway,et al.  Prenatal Development of Layer-Specific Local Circuits in Primary Visual Cortex of the Macaque Monkey , 1998, The Journal of Neuroscience.

[77]  U. Polat,et al.  Collinear stimuli regulate visual responses depending on cell's contrast threshold , 1998, Nature.

[78]  E. Todorov,et al.  A local circuit approach to understanding integration of long-range inputs in primary visual cortex. , 1998, Cerebral cortex.

[79]  R. Shapley,et al.  Contrast's effect on spatial summation by macaque V1 neurons , 1999, Nature Neuroscience.

[80]  I. Ohzawa,et al.  Asymmetric Suppression Outside the Classical Receptive Field of the Visual Cortex , 1999, The Journal of Neuroscience.

[81]  BsnNr C. Srorn,et al.  CLASSIFYING SIMPLE AND COMPLEX CELLS ON THE BASIS OF RESPONSE MODULATION , 2002 .