Path-planning modules for Autonomous Vehicles: Current status and challenges

A detailed survey of the available literature on path planning of Autonomous Ground Vehicle (AGV) is conducted, including the overview of single-robot control architectures, different path-planning approaches, analyses of current sensor systems and different velocity estimation techniques. In order to achieve the full autonomous operation of a mobile robot, path or motion planning, i.e., the planning of a collision-free path from a start to goal position through a collection of obstacles, is the fundamental task in the field of autonomous control systems. As AGVs are used in a wide variety of applications to perform autonomous tasks, organising their intelligence plays a key role in successfully programming a robot for a particular application and applying the right control architecture makes the autonomous control problem easier to solve. For autonomous vehicles, sensors play an important role in acquiring different attributes of the working environment and, by extracting meaningful information from these data, the autonomous system can acquire knowledge about its environment. Moreover, different velocity estimation techniques are reviewed in the context of dealing with the dynamic obstacles. A brief review of the available literature on path-planning approaches and techniques is provided.

[1]  Yael Moses,et al.  Multi-view Scene Flow Estimation: A View Centered Variational Approach , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[2]  Frederic Devernay,et al.  Multi-Camera Scene Flow by Tracking 3-D Points and Surfels , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[3]  S. Areibi,et al.  Genetic algorithm for dynamic path planning , 2004, Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No.04CH37513).

[4]  Anthony Stentz,et al.  The D* Algorithm for Real-Time Planning of Optimal Traverses , 1994 .

[5]  Srikanta Patnaik Robot cognition and navigation - an experiment with mobile robots , 2007, Cognitive Technologies.

[6]  Danny Ziyi Chen,et al.  Planning conditional shortest paths through an unknown environment: a framed-quadtree approach , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[7]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[8]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[9]  Anthony Stentz Optimal and Efficient Path Planning for Unknown and Dynamic Environments , 1993 .

[10]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[11]  Ye Zhang,et al.  On 3D scene flow and structure estimation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[12]  Erann Gat,et al.  Integrating Planning and Reacting in a Heterogeneous Asynchronous Architecture for Controlling Real-World Mobile Robots , 1992, AAAI.

[13]  Hobart R. Everett,et al.  Sensors for Mobile Robots: Theory and Application , 1995 .

[14]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[15]  David Furcy,et al.  Incremental Heuristic Search in Artificial Intelligence , 2004 .

[16]  Ellips Masehian,et al.  Classic and Heuristic Approaches in Robot Motion Planning A Chronological Review , 2007 .

[17]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[18]  Robert Lange,et al.  3D time-of-flight distance measurement with custom solid-state image sensors in CMOS/CCD-technology , 2006 .

[19]  Sven Koenig,et al.  Incremental Phi*: Incremental Any-Angle Path Planning on Grids , 2009, IJCAI.

[20]  Nils J. Nilsson,et al.  Shakey the Robot , 1984 .

[21]  Ariel Felner,et al.  Theta*: Any-Angle Path Planning on Grids , 2007, AAAI.

[22]  Rongxin Jiang,et al.  A Robot Collision Avoidance Scheme Based on the Moving Obstacle Motion Prediction , 2008, 2008 ISECS International Colloquium on Computing, Communication, Control, and Management.

[23]  Anthony Stentz,et al.  Field D*: An Interpolation-Based Path Planner and Replanner , 2005, ISRR.

[24]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[25]  Ashraf Elnagar,et al.  Prediction of moving objects in dynamic environments using Kalman filters , 2001, Proceedings 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation (Cat. No.01EX515).

[26]  J. Giesbrecht,et al.  Global Path Planning for Unmanned Ground Vehicles , 2004 .

[27]  Anthony Stentz,et al.  Mobile Robot Navigation: The CMU System , 1987, IEEE Expert.

[28]  Mirko Schmidt Analysis, Modeling and Dynamic Optimization of 3D Time-of-Flight Imaging Systems , 2011 .

[29]  Alistair McLean,et al.  Incremental roadmaps and global path planning in evolving industrial environments , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[30]  Qiang Bi,et al.  Hybrid evolutionary motion planning using follow boundary repair for mobile robots , 2001, J. Syst. Archit..

[31]  Jean-Claude Latombe,et al.  Constraint reformulation in a hierarchical path planner , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[32]  Anthony Stentz,et al.  The Focussed D* Algorithm for Real-Time Replanning , 1995, IJCAI.

[33]  Oscar Montiel,et al.  Optimal Path Planning Generation for Mobile Robots using Parallel Evolutionary Artificial Potential Field , 2015, J. Intell. Robotic Syst..

[34]  Hiroshi Noborio,et al.  A quadtree-based path-planning algorithm for a mobile robot , 1990, J. Field Robotics.

[35]  Thomas W. Reps,et al.  An Incremental Algorithm for a Generalization of the Shortest-Path Problem , 1996, J. Algorithms.

[36]  Mohammad Pourmahmood Aghababa,et al.  3D path planning for underwater vehicles using five evolutionary optimization algorithms avoiding static and energetic obstacles , 2012 .

[37]  Qiuming Zhu,et al.  Hidden Markov model for dynamic obstacle avoidance of mobile robot navigation , 1991, IEEE Trans. Robotics Autom..

[38]  David Furcy,et al.  Lifelong Planning A , 2004, Artif. Intell..

[39]  Nadine Tschichold-Gürmann,et al.  Exact cell decomposition of arrangements used for path planning in robotics , 1999 .

[40]  Takeo Kanade,et al.  Three-dimensional scene flow , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Sebastian Thrun,et al.  Anytime Dynamic A*: An Anytime, Replanning Algorithm , 2005, ICAPS.

[42]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[43]  Edmond Boyer,et al.  Scene Flow from Depth and Color Images , 2011, BMVC.

[44]  Carl D. Crane,et al.  Autonomous ground vehicle path tracking , 2004, J. Field Robotics.

[45]  Sebastian Thrun,et al.  Anytime search in dynamic graphs , 2008, Artif. Intell..

[46]  Olivier D. Faugeras,et al.  Multi-View Stereo Reconstruction and Scene Flow Estimation with a Global Image-Based Matching Score , 2007, International Journal of Computer Vision.

[47]  Howie Choset,et al.  Sensor based motion planning: the hierarchical generalized Voronoi graph , 1996 .

[48]  Richard E. Korf,et al.  Real-Time Heuristic Search: First Results , 1987, AAAI.

[49]  Anthony Stentz,et al.  The Delayed D* Algorithm for Efficient Path Replanning , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[50]  G. N. Saridis,et al.  Intelligent robotic control , 1983 .

[51]  Rodney A. Brooks,et al.  Asynchronous Distributed Control System For A Mobile Robot , 1987, Other Conferences.

[52]  G. Swaminathan Robot Motion Planning , 2006 .

[53]  Oscar Castillo,et al.  Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation , 2009, Appl. Soft Comput..

[54]  Danail Stoyanov,et al.  Stereoscopic Scene Flow for Robotic Assisted Minimally Invasive Surgery , 2012, MICCAI.

[55]  Rui Li,et al.  Multi-Scale 3D Scene Flow from Binocular Stereo Sequences , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[56]  Leslie Pack Kaelbling,et al.  A Situated View of Representation and Control , 1995, Artif. Intell..

[57]  Sven Koenig,et al.  Generalized Adaptive A* , 2008, AAMAS.

[58]  Velappa Ganapathy,et al.  Enhanced D* Lite Algorithm for Autonomous Mobile Robot , 2011 .

[59]  Marcel Schoppers,et al.  Universal Plans for Reactive Robots in Unpredictable Environments , 1987, IJCAI.

[60]  Robin R. Murphy,et al.  Introduction to AI Robotics , 2000 .

[61]  James L. Crowley,et al.  Scene flow by tracking in intensity and depth data , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[62]  Ren C. Luo,et al.  Target tracking by grey prediction theory and look-ahead fuzzy logic control , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[63]  M. Clabian,et al.  Hypothesis based vehicle detection for increased simplicity in multi-sensor ACC , 2005, IEEE Proceedings. Intelligent Vehicles Symposium, 2005..

[64]  Uwe Franke,et al.  Dense, Robust, and Accurate Motion Field Estimation from Stereo Image Sequences in Real-Time , 2010, ECCV.

[65]  Sven Koenig,et al.  The Fringe-Saving A* Search Algorithm - A Feasibility Study , 2007, IJCAI.

[66]  Sven Koenig,et al.  Generalized Fringe-Retrieving A*: faster moving target search on state lattices , 2010, AAMAS.

[67]  Ouahiba Azouaoui,et al.  Moving obstacles detection and tracking with laser range finder , 2009, 2009 International Conference on Advanced Robotics.

[68]  Richard Bowden,et al.  Kinecting the dots: Particle based scene flow from depth sensors , 2011, 2011 International Conference on Computer Vision.

[69]  Ronald C. Arkin,et al.  Towards the Unification of Navigational Planning and Reactive Control , 1989 .

[70]  R. A. Brooks,et al.  Intelligence without Representation , 1991, Artif. Intell..

[71]  Konrad Schindler,et al.  3D scene flow estimation with a rigid motion prior , 2011, 2011 International Conference on Computer Vision.

[72]  Sven Koenig,et al.  Dynamic fringe-saving A* , 2009, AAMAS.

[73]  Frederic Devernay,et al.  A Variational Method for Scene Flow Estimation from Stereo Sequences , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[74]  G. Wanielik,et al.  Shape and motion-based pedestrian detection in infrared images: a multi sensor approach , 2005, IEEE Proceedings. Intelligent Vehicles Symposium, 2005..

[75]  Robert B. Fisher,et al.  Colour Constrained 4D Flow , 2005, BMVC.

[76]  Daniel Cremers,et al.  Stereoscopic Scene Flow Computation for 3D Motion Understanding , 2011, International Journal of Computer Vision.

[77]  Massimo Bertozzi,et al.  Artificial vision in road vehicles , 2002, Proc. IEEE.

[78]  Huiming Yu,et al.  Destination Driven Motion Planning via Obstacle Motion Prediction and Multi-State Path Repair , 2003, J. Intell. Robotic Syst..

[79]  Eric A. Hansen,et al.  Anytime Heuristic Search , 2011, J. Artif. Intell. Res..

[80]  Sven Koenig,et al.  Improved fast replanning for robot navigation in unknown terrain , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[81]  Jean-Paul Laumond,et al.  Robot Motion Planning and Control , 1998 .

[82]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[83]  Maxim Likhachev,et al.  D*lite , 2002, AAAI/IAAI.

[84]  George K. Papakonstantinou,et al.  Localized qualitative navigation for indoor environments , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[85]  Pattie Maes,et al.  Designing autonomous agents: Theory and practice from biology to engineering and back , 1990, Robotics Auton. Syst..

[86]  Wen-Hsiang Tsai,et al.  Collision avoidance by a modified least-mean-square-error classification scheme for indoor autonomous land vehicle navigation , 1991, J. Field Robotics.

[87]  Tim Smithers,et al.  Symbol grounding via a hybrid architecture in an autonomous assembly system , 1990, Robotics Auton. Syst..

[88]  Joachim Weickert,et al.  Joint Estimation of Motion, Structure and Geometry from Stereo Sequences , 2010, ECCV.

[89]  Lakhmi C. Jain,et al.  Path Planning and Obstacle Avoidance for Autonomous Mobile Robots: A Review , 2006, KES.

[90]  Anthony Stentz CONSTRAINED DYNAMIC ROUTE PLANNING FOR UNMANNED GROUND VEHICLES , 2002 .