Visual Object Processing

We present an overview of the functional and anatomical pathways and steps involved in going from a pattern of photoreceptor activations in the retina to recognizing an object in the world. Our focus is the geniculostriate pathway and the ventral processing stream of the cortex, which play a dominant role in object processing in humans. For recognition to occur, there must be the generation of a representation that can be matched to memory. Here we focus on the perceptual organizing factors, such as grouping and segmentation, that play an initial role in generating that which will be matched to memory. We then examine more complex representations and how they might be generated, including 3D forms and objects. We also discuss theories of object recognition, contrasting, for example, theories that posit that particular views of objects are matched to views in memory, versus structural approaches which posit that 3D shapes and parts are matched to similar representations in memory. The plusses and minuses of different theories of object recognition are considered. Keywords: object recognition; perceptual organization

[1]  A. Young,et al.  Human Cognitive Neuropsychology , 2013 .

[2]  G. Orban The extraction of 3D shape in the visual system of human and nonhuman primates. , 2011, Annual review of neuroscience.

[3]  Leslie G. Ungerleider,et al.  Uncovering the visual “alphabet”: Advances in our understanding of object perception , 2011, Vision Research.

[4]  G. Rhodes,et al.  Sex-specific norms code face identity. , 2011, Journal of vision.

[5]  Linda Jeffery,et al.  Race-specific norms for coding face identity and a functional role for norms. , 2010, Journal of vision.

[6]  Elan Barenholtz Convexities move because they contain matter. , 2010, Journal of vision.

[7]  Tandra Ghose,et al.  Extremal edges versus other principles of figure-ground organization. , 2010, Journal of vision.

[8]  G. Rhodes,et al.  Perceptual adaptation helps us identify faces , 2010, Vision Research.

[9]  Alexandra J. Golby,et al.  Robust Selectivity to Two-Object Images in Human Visual Cortex , 2010, Current Biology.

[10]  C. Baker,et al.  The neural basis of visual object learning , 2010, Trends in Cognitive Sciences.

[11]  R. Farivar Dorsal–ventral integration in object recognition , 2009, Brain Research Reviews.

[12]  Soojin Park,et al.  Different roles of the parahippocampal place area (PPA) and retrosplenial cortex (RSC) in panoramic scene perception , 2009, NeuroImage.

[13]  Dirk B. Walther,et al.  Natural Scene Categories Revealed in Distributed Patterns of Activity in the Human Brain , 2009, The Journal of Neuroscience.

[14]  Doris Y. Tsao,et al.  A face feature space in the macaque temporal lobe , 2009, Nature Neuroscience.

[15]  G. Rhodes,et al.  The fusiform face area and occipital face area show sensitivity to spatial relations in faces , 2009, The European journal of neuroscience.

[16]  C. Gross,et al.  Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study. , 2009, Journal of neurophysiology.

[17]  M. Tarr,et al.  Figure-ground assignment to a translating contour: a preference for advancing vs. receding motion. , 2009, Journal of vision.

[18]  P.-J. Hsieh,et al.  Feature mixing rather than feature replacement during perceptual filling-in , 2009, Vision Research.

[19]  R. Tootell,et al.  An anterior temporal face patch in human cortex, predicted by macaque maps , 2009, Proceedings of the National Academy of Sciences.

[20]  Leslie G. Ungerleider,et al.  Object representations in the temporal cortex of monkeys and humans as revealed by functional magnetic resonance imaging. , 2009, Journal of neurophysiology.

[21]  H. Barlow,et al.  Single Units and Sensation: A Neuron Doctrine for Perceptual Psychology? , 1972, Perception.

[22]  B. Jagadeesh Recognizing Grandmother , 2009, Nature Neuroscience.

[23]  Doris Y. Tsao,et al.  Comparing face patch systems in macaques and humans , 2008, Proceedings of the National Academy of Sciences.

[24]  S. Palmer,et al.  Edge-region grouping in figure-ground organization and depth perception. , 2008, Journal of experimental psychology. Human perception and performance.

[25]  Eric T. Carlson,et al.  A neural code for three-dimensional object shape in macaque inferotemporal cortex , 2008, Nature Neuroscience.

[26]  Doris Y. Tsao,et al.  Mechanisms of face perception. , 2008, Annual review of neuroscience.

[27]  Russell A. Epstein,et al.  Two kinds of FMRI repetition suppression? Evidence for dissociable neural mechanisms. , 2008, Journal of neurophysiology.

[28]  Leslie G. Ungerleider,et al.  Perception of emotional expressions is independent of face selectivity in monkey inferior temporal cortex , 2008, Proceedings of the National Academy of Sciences.

[29]  C. Koch,et al.  Sparse but not ‘Grandmother-cell’ coding in the medial temporal lobe , 2008, Trends in Cognitive Sciences.

[30]  S. Palmer,et al.  Extremal Edges A Powerful Cue to Depth Perception and Figure-Ground Organization , 2007 .

[31]  E. Rolls The representation of information about faces in the temporal and frontal lobes , 2007, Neuropsychologia.

[32]  R. Goebel,et al.  Individual faces elicit distinct response patterns in human anterior temporal cortex , 2007, Proceedings of the National Academy of Sciences.

[33]  Nikos K. Logothetis,et al.  Facial-Expression and Gaze-Selective Responses in the Monkey Amygdala , 2007, Current Biology.

[34]  Jacob Feldman,et al.  Determination of visual figure and ground in dynamically deforming shapes , 2006, Cognition.

[35]  R. Kiani,et al.  Microstimulation of inferotemporal cortex influences face categorization , 2006, Nature.

[36]  M. Giese,et al.  Norm-based face encoding by single neurons in the monkey inferotemporal cortex , 2006, Nature.

[37]  Doris Y. Tsao,et al.  A Cortical Region Consisting Entirely of Face-Selective Cells , 2006, Science.

[38]  Glyn W Humphreys,et al.  Features, objects, action: The cognitive neuropsychology of visual object processing, 1984–2004 , 2006, Cognitive neuropsychology.

[39]  Stephen L Macknik,et al.  Visibility, visual awareness, and visual masking of simple unattended targets are confined to areas in the occipital cortex beyond human V1/V2. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  H. Wilson,et al.  fMRI evidence for the neural representation of faces , 2005, Nature Neuroscience.

[41]  Charles E. Connor Neuroscience: Friends and grandmothers , 2005, Nature.

[42]  C. Koch,et al.  Invariant visual representation by single neurons in the human brain , 2005, Nature.

[43]  C. Gross,et al.  Representations of faces and body parts in macaque temporal cortex: a functional MRI study. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  B. Duchaine,et al.  Visual Agnosia, 2nd Ed. , 2005 .

[45]  Deborah E. Hannula,et al.  Imaging implicit perception: promise and pitfalls , 2005, Nature Reviews Neuroscience.

[46]  Glyn W. Humphreys,et al.  A new cue to figure–ground coding: top–bottom polarity , 2004, Vision Research.

[47]  M. Corbetta,et al.  Extrastriate body area in human occipital cortex responds to the performance of motor actions , 2004, Nature Neuroscience.

[48]  Anastasia V. Flevaris,et al.  Exogenous Spatial Attention Influences Figure-Ground Assignment , 2004 .

[49]  J. Koenderink,et al.  The internal representation of solid shape with respect to vision , 1979, Biological Cybernetics.

[50]  S. Yamane,et al.  What facial features activate face neurons in the inferotemporal cortex of the monkey? , 2004, Experimental Brain Research.

[51]  D. V. van Essen,et al.  Surface-based approaches to spatial localization and registration in primate cerebral cortex. , 2004, NeuroImage.

[52]  Hisao Nishijo,et al.  Neuronal correlates of face identification in the monkey anterior temporal cortical areas. , 2004, Journal of neurophysiology.

[53]  D. Perrett,et al.  Visual neurones responsive to faces in the monkey temporal cortex , 2004, Experimental Brain Research.

[54]  M. Seghier,et al.  A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. , 2003, Brain : a journal of neurology.

[55]  Rolf Nelson,et al.  When does grouping happen? , 2003, Acta psychologica.

[56]  Doris Y. Tsao,et al.  Faces and objects in macaque cerebral cortex , 2003, Nature Neuroscience.

[57]  C. Gross Genealogy of the “Grandmother Cell” , 2002, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[58]  G. Woodman,et al.  Lower region: a new cue for figure-ground assignment. , 2002, Journal of experimental psychology. General.

[59]  Christof Koch,et al.  Single-neuron correlates of subjective vision in the human medial temporal lobe , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[60]  T. Poggio,et al.  Neural mechanisms of object recognition , 2002, Current Opinion in Neurobiology.

[61]  J. Norman Two visual systems and two theories of perception: An attempt to reconcile the constructivist and ecological approaches. , 2001, The Behavioral and brain sciences.

[62]  P. Tse A contour propagation approach to surface filling-in and volume formation. , 2001, Psychological review.

[63]  P. Bennett,et al.  Generalized Common Fate: Grouping by Common Luminance Changes , 2001, Psychological science.

[64]  N. Kanwisher,et al.  The Human Body , 2001 .

[65]  Russell A. Epstein,et al.  Neuropsychological evidence for a topographical learning mechanism in parahippocampal cortex , 2001, Cognitive neuropsychology.

[66]  Edward H. Adelson,et al.  Synchrony does not promote grouping in temporally structured displays , 2001, Nature Neuroscience.

[67]  Michael J Tarr,et al.  What defines a view? , 2001, Vision Research.

[68]  N. Kanwisher,et al.  The lateral occipital complex and its role in object recognition , 2001, Vision Research.

[69]  S. Schultz Principles of Neural Science, 4th ed. , 2001 .

[70]  T. Hendler,et al.  A hierarchical axis of object processing stages in the human visual cortex. , 2001, Cerebral cortex.

[71]  Refractor Vision , 2000, The Lancet.

[72]  A. O'Toole,et al.  Prototype-referenced shape encoding revealed by high-level aftereffects , 2001, Nature Neuroscience.

[73]  Tomaso Poggio,et al.  Models of object recognition , 2000, Nature Neuroscience.

[74]  S. Palmer,et al.  Late influences on perceptual grouping: Illusory figures , 2000, Perception & psychophysics.

[75]  Charles G. Gross,et al.  Coding for visual categories in the human brain , 2000, Nature Neuroscience.

[76]  C. Koch,et al.  Category-specific visual responses of single neurons in the human medial temporal lobe , 2000, Nature Neuroscience.

[77]  Martha J. Farah,et al.  The Cognitive Neuroscience of Vision , 2000 .

[78]  H. Barlow Vision Science: Photons to Phenomenology by Stephen E. Palmer , 2000, Trends in Cognitive Sciences.

[79]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[80]  S. Edelman,et al.  Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex , 1999, Neuron.

[81]  Kenji Kawano,et al.  Global and fine information coded by single neurons in the temporal visual cortex , 1999, Nature.

[82]  Leslie G. Ungerleider,et al.  Distributed representation of objects in the human ventral visual pathway. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[83]  R Blake,et al.  Visual form created solely from temporal structure. , 1999, Science.

[84]  Leslie G. Ungerleider,et al.  The Effect of Face Inversion on Activity in Human Neural Systems for Face and Object Perception , 1999, Neuron.

[85]  R. Blake,et al.  Visual features that vary together over time group together over space , 1998, Nature Neuroscience.

[86]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[87]  D. V. van Essen,et al.  Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[88]  S. Edelman,et al.  Human Brain Mapping 6:316–328(1998) � A Sequence of Object-Processing Stages Revealed by fMRI in the Human Occipital Lobe , 2022 .

[89]  H R Wilson,et al.  Evolving Concepts of Spatial Channels in Vision: From Independence to Nonlinear Interactions , 1997, Perception.

[90]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[91]  Donald D. Hoffman,et al.  Salience of visual parts , 1997, Cognition.

[92]  Jon Driver,et al.  Edge-Assignment and Figure–Ground Segmentation in Short-Term Visual Matching , 1996, Cognitive Psychology.

[93]  T. Allison,et al.  Differential Sensitivity of Human Visual Cortex to Faces, Letterstrings, and Textures: A Functional Magnetic Resonance Imaging Study , 1996, The Journal of Neuroscience.

[94]  S. Ullman High-Level Vision: Object Recognition and Visual Cognition , 1996 .

[95]  Stephen E. Palmer,et al.  Late influences on perceptual grouping: Amodal completion , 1996, Psychonomic bulletin & review.

[96]  M. Paradiso,et al.  Neuroscience: Exploring the Brain , 1996 .

[97]  J. Hummel,et al.  Categorical relations in shape perception. , 1996, Spatial vision.

[98]  David L. Sheinberg,et al.  Visual object recognition. , 1996, Annual review of neuroscience.

[99]  I. Biederman,et al.  Viewpoint-dependent mechanisms in visual object recognition: Reply to Tarr and Bülthoff (1995). , 1995 .

[100]  M J Tarr,et al.  Is human object recognition better described by geon structural descriptions or by multiple views? Comment on Biederman and Gerhardstein (1993). , 1995, Journal of experimental psychology. Human perception and performance.

[101]  T. Allison,et al.  Face-sensitive regions in human extrastriate cortex studied by functional MRI. , 1995, Journal of neurophysiology.

[102]  M. Kubovy,et al.  Grouping by Proximity and Multistability in Dot Lattices: A Quantitative Gestalt Theory , 1995 .

[103]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[104]  L. Cosmides From : The Cognitive Neurosciences , 1995 .

[105]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[106]  I Rock,et al.  On the nature and order of organizational processing: A reply to Peterson , 1994, Psychonomic bulletin & review.

[107]  N. Logothetis,et al.  View-dependent object recognition by monkeys , 1994, Current Biology.

[108]  S. Palmer,et al.  Rethinking perceptual organization: The role of uniform connectedness , 1994, Psychonomic bulletin & review.

[109]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[110]  I. Biederman,et al.  Recognizing depth-rotated objects: evidence and conditions for three-dimensional viewpoint invariance. , 1993, Journal of experimental psychology. Human perception and performance.

[111]  S. Palmer,et al.  Grouping Based on Phenomenal Similarity of Achromatic Color , 1992, Perception.

[112]  S. Edelman,et al.  Orientation dependence in the recognition of familiar and novel views of three-dimensional objects , 1992, Vision Research.

[113]  M. Farah Is an Object an Object an Object? Cognitive and Neuropsychological Investigations of Domain Specificity in Visual Object Recognition , 1992 .

[114]  I. Biederman,et al.  Dynamic binding in a neural network for shape recognition. , 1992, Psychological review.

[115]  J. Sergent,et al.  Functional neuroanatomy of face and object processing. A positron emission tomography study. , 1992, Brain : a journal of neurology.

[116]  I. Biederman,et al.  Size invariance in visual object priming , 1992 .

[117]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[118]  H H Bülthoff,et al.  Psychophysical support for a two-dimensional view interpolation theory of object recognition. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[119]  Ronen Basri,et al.  Recognition by Linear Combinations of Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[120]  I. Biederman,et al.  Priming contour-deleted images: Evidence for intermediate representations in visual object recognition , 1991, Cognitive Psychology.

[121]  J. Tanaka,et al.  Object categories and expertise: Is the basic level in the eye of the beholder? , 1991, Cognitive Psychology.

[122]  J. Horton,et al.  The representation of the visual field in human striate cortex. A revision of the classic Holmes map. , 1991, Archives of ophthalmology.

[123]  Mary A. Peterson,et al.  The initial identification of figure-ground relationships: Contributions from shape recognition processes , 1991 .

[124]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[125]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[126]  G. Ettlinger “Object Vision” and “Spatial Vision”: The Neuropsychological Evidence for the Distinction , 1990, Cortex.

[127]  T. Poggio,et al.  A network that learns to recognize three-dimensional objects , 1990, Nature.

[128]  E. Reed The Ecological Approach to Visual Perception , 1989 .

[129]  S. Ullman Aligning pictorial descriptions: An approach to object recognition , 1989, Cognition.

[130]  M. Hasselmo,et al.  The role of expression and identity in the face-selective responses of neurons in the temporal visual cortex of the monkey , 1989, Behavioural Brain Research.

[131]  M. Tarr,et al.  Mental rotation and orientation-dependence in shape recognition , 1989, Cognitive Psychology.

[132]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[133]  T Landis,et al.  Prosopagnosia and agnosia for noncanonical views. An autopsied case. , 1988, Brain : a journal of neurology.

[134]  H. Lissauer,et al.  A case of visual agnosia with a contribution to theory , 1988 .

[135]  O. G. Selfridge,et al.  Pandemonium: a paradigm for learning , 1988 .

[136]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[137]  J. Moreno The Man Who Mistook His Wife for a Hat and Other Clinical Tales , 1986 .

[138]  P. Jolicoeur The time to name disoriented natural objects , 1985, Memory & cognition.

[139]  A. J. Mistlin,et al.  Visual cells in the temporal cortex sensitive to face view and gaze direction , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[140]  D. Lowe Perceptual organization and visual recognition , 2012 .

[141]  Donald D. Hoffman,et al.  Parts of recognition , 1984, Cognition.

[142]  T. Shallice,et al.  Category specific semantic impairments , 1984 .

[143]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[144]  Stephen M. Kosslyn,et al.  Pictures and names: Making the connection , 1984, Cognitive Psychology.

[145]  Rolls Et Neurons in the cortex of the temporal lobe and in the amygdala of the monkey with responses selective for faces. , 1984 .

[146]  E. Rolls Neurons in the cortex of the temporal lobe and in the amygdala of the monkey with responses selective for faces. , 1984, Human neurobiology.

[147]  Leslie G. Ungerleider,et al.  Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys , 1982, Behavioural Brain Research.

[148]  G. V. Van Hoesen,et al.  Prosopagnosia , 1982, Neurology.

[149]  R. Desimone,et al.  Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[150]  E. Warrington,et al.  Two Categorical Stages of Object Recognition , 1978, Perception.

[151]  D. Marr,et al.  Representation and recognition of the spatial organization of three-dimensional shapes , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[152]  Leslie G. Ungerleider,et al.  Inferotemporal versus combined pulvinar-prestriate lesions in the rhesus monkey: Effects on color, object and pattern discrimination , 1977, Neuropsychologia.

[153]  Wayne D. Gray,et al.  Basic objects in natural categories , 1976, Cognitive Psychology.

[154]  Walter Gerbino,et al.  Convexity and Symmetry in Figure-Ground Organization , 1976 .

[155]  E. Rosch The nature of mental codes for color categories. , 1975 .

[156]  E. Rosch Cognitive Representations of Semantic Categories. , 1975 .

[157]  tephen E. Palmer The effects of contextual scenes on the identification of objects , 1975, Memory & cognition.

[158]  P. Milner A model for visual shape recognition. , 1974, Psychological review.

[159]  Dave Bartram,et al.  The role of visual and semantic codes in object naming , 1974 .

[160]  A. Taylor,et al.  The contribution of the right parietal lobe to object recognition. , 1973, Cortex; a journal devoted to the study of the nervous system and behavior.

[161]  I. Biederman,et al.  Searching for objects in real-world scences. , 1973, Journal of experimental psychology.

[162]  I. Biederman Perceiving Real-World Scenes , 1972, Science.

[163]  H B Barlow,et al.  Single units and sensation: a neuron doctrine for perceptual psychology? , 1972, Perception.

[164]  D. B. Bender,et al.  Visual properties of neurons in inferotemporal cortex of the Macaque. , 1972, Journal of neurophysiology.

[165]  Jaakko Hintikka,et al.  On the Logic of Perception , 1969 .

[166]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[167]  U. Neisser Cognitive Psychology: Classic Edition , 1967 .

[168]  I. Rock,et al.  GROUPING BASED ON PHENOMENAL PROXIMITY. , 1964, Journal of experimental psychology.

[169]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[170]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[171]  J. Hochberg,et al.  A quantitative index of stimulus-similarity proximity vs. differences in brightness. , 1956, The American journal of psychology.

[172]  Figural after-effect, after-image, and physiological nystagmus. , 1956, The American journal of psychology.

[173]  M. Wertheimer Untersuchungen zur Lehre von der Gestalt. II , 1923 .

[174]  Max Wertheimer,et al.  Untersuchungen zur Lehre von der Gestalt , 2017 .

[175]  J. Changeux,et al.  SYNAPTIC PLASTICITY AS BASIS OF BRAIN ORGANIZATION , 2022 .