Resolution Independent Density Estimation for motion planning in high-dimensional spaces

This paper presents a new motion planner, Search Tree with Resolution Independent Density Estimation (STRIDE), designed for rapid exploration and path planning in high-dimensional systems (greater than 10). A Geometric Near-neighbor Access Tree (GNAT) is maintained to estimate the sampling density of the configuration space, allowing an implicit, resolution-independent, Voronoi partitioning to provide sampling density estimates, naturally guiding the planner towards unexplored regions of the configuration space. This planner is capable of rapid exploration in the full dimension of the configuration space and, given that a GNAT requires only a valid distance metric, STRIDE is largely parameter-free. Extensive experimental results demonstrate significant dimension-dependent performance improvements over alternative state-of-the-art planners. In particular, high-dimensional systems where the free space is mostly defined by narrow passages were found to yield the greatest performance improvements. Experimental results are shown for both a classical 6-dimensional problem and those for which the dimension incrementally varies from 3 to 27.

[1]  Thierry Siméon,et al.  A path planning approach for computing large-amplitude motions of flexible molecules , 2005, ISMB.

[2]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[3]  Rajeev Motwani,et al.  Path planning in expansive configuration spaces , 1997, Proceedings of International Conference on Robotics and Automation.

[4]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[5]  Leonidas J. Guibas,et al.  A probabilistic roadmap planner for flexible objects with a workspace medial-axis-based sampling approach , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[6]  脇元 修一,et al.  IEEE International Conference on Robotics and Automation (ICRA) におけるフルードパワー技術の研究動向 , 2011 .

[7]  Suman Chakravorty,et al.  Adaptive sampling for generalized probabilistic roadmaps , 2012 .

[8]  Lydia E. Kavraki,et al.  On the performance of random linear projections for sampling-based motion planning , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[9]  Jean-Claude Latombe,et al.  On Delaying Collision Checking in PRM Planning: Application to Multi-Robot Coordination , 2002, Int. J. Robotics Res..

[10]  Kostas E. Bekris,et al.  Multi-Agent Pathfinding with Simultaneous Execution of Single-Agent Primitives , 2021, SOCS.

[11]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[12]  Sergey Brin,et al.  Near Neighbor Search in Large Metric Spaces , 1995, VLDB.

[13]  Thierry Siméon,et al.  Visibility-based probabilistic roadmaps for motion planning , 2000, Adv. Robotics.

[14]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[15]  L. Kavraki,et al.  Tracing conformational changes in proteins , 2009, 2009 IEEE International Conference on Bioinformatics and Biomedicine Workshop.

[16]  G. Swaminathan Robot Motion Planning , 2006 .

[17]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[18]  Lydia E. Kavraki,et al.  Motion Planning in the Presence of Drift, Underactuation and Discrete System Changes , 2005, Robotics: Science and Systems.

[19]  James J. Kuffner,et al.  Effective sampling and distance metrics for 3D rigid body path planning , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[20]  Lydia E. Kavraki,et al.  A Sampling-Based Tree Planner for Systems With Complex Dynamics , 2012, IEEE Transactions on Robotics.

[21]  Manfred Lau,et al.  Behavior planning for character animation , 2005, SCA '05.

[22]  Marin Kobilarov,et al.  Cross-entropy motion planning , 2012, Int. J. Robotics Res..

[23]  Dinesh Manocha,et al.  Faster Sample-Based Motion Planning Using Instance-Based Learning , 2012, WAFR.

[24]  Jean-Paul Laumond,et al.  Linear dimensionality reduction in random motion planning , 2011, Int. J. Robotics Res..

[25]  Lydia Tapia,et al.  A Motion Planning Approach to Studying Molecular Motions , 2010, Commun. Inf. Syst..

[26]  Mark H. Overmars,et al.  The Gaussian sampling strategy for probabilistic roadmap planners , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[27]  Nancy M. Amato,et al.  Using motion planning to study protein folding pathways , 2001, J. Comput. Biol..

[28]  Lydia E. Kavraki,et al.  Motion Planning With Dynamics by a Synergistic Combination of Layers of Planning , 2010, IEEE Transactions on Robotics.

[29]  Lydia E. Kavraki,et al.  The Open Motion Planning Library , 2012, IEEE Robotics & Automation Magazine.

[30]  Russ Tedrake,et al.  Path planning in 1000+ dimensions using a task-space Voronoi bias , 2009, 2009 IEEE International Conference on Robotics and Automation.

[31]  Teofilo F. GONZALEZ,et al.  Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..

[32]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[33]  Daniel Vallejo,et al.  OBPRM: an obstacle-based PRM for 3D workspaces , 1998 .

[34]  Moshe Y. Vardi,et al.  Motion Planning with Complex Goals , 2011, IEEE Robotics & Automation Magazine.

[35]  Lydia E. Kavraki,et al.  Sampling-based motion planning with temporal goals , 2010, 2010 IEEE International Conference on Robotics and Automation.