Combining Probabilities, Failures and Safety in Robot Control

We present a formal framework for treating both incomplete information in the initial database and possible failures during an agent's execution of a course of actions. These two aspects of uncertainty are formalized by two different notions of probability. We introduce also a concept of expected probability, which is obtained by combining the two previous notions. Expected probability accounts for the probability of a sentence on the hypothesis that the sequence of actions needed to make it true might have failed. Expected probability leads to the possibility of comparing courses of actions and verifying which is more safe.

[1]  R. Held Shifts in binaural localization after prolonged exposures to atypical combinations of stimuli. , 1955, The American journal of psychology.

[2]  Simone Santini,et al.  Similarity Measures , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Drew McDermott,et al.  Probabilistic Projection in Planning , 1997 .

[4]  Victor Zue,et al.  JUPlTER: a telephone-based conversational interface for weather information , 2000, IEEE Trans. Speech Audio Process..

[5]  Kim L. Boyer,et al.  Information theoretic clustering of large structural modelbases , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[6]  George Apostolakis,et al.  Decision theory , 1986 .

[7]  H. Gaifman Concerning measures in first order calculi , 1964 .

[8]  Alex Pentland,et al.  View-based and modular eigenspaces for face recognition , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Yves Chiaramella,et al.  Integrating Hypermedia and Information Retrieval with Conceptual Graphs Formalism , 1995, HIM.

[10]  Brian Scassellati,et al.  Alternative Essences of Intelligence , 1998, AAAI/IAAI.

[11]  David G. Lowe,et al.  Learning object recognition models from images , 1993, 1993 (4th) International Conference on Computer Vision.

[12]  Michael H. Coen,et al.  Learning spatial event models from multiple-camera perspectives , 1999, IECON'99. Conference Proceedings. 25th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.99CH37029).

[13]  Peter Roeper,et al.  Probability Theory and Probability Semantics , 1999 .

[14]  John G. Gibbons Knowledge in Action , 2001 .

[15]  D. Lewkowicz,et al.  A dynamic systems approach to the development of cognition and action. , 2007, Journal of cognitive neuroscience.

[16]  Michael H. Coen,et al.  Design Principles for Intelligent Environments , 1998, AAAI/IAAI.

[17]  Giulio Sandini,et al.  Human Sensori-Motor Development and Artificial Systems , 1997 .

[18]  Takashi Matsuyama Expert systems for image processing: Knowledge-based composition of image analysis processes , 1989, Comput. Vis. Graph. Image Process..

[19]  Russell Greiner,et al.  Efficient car recognition policies , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[20]  Robert C. Bolles,et al.  The Representation Space Paradigm of Concurrent Evolving Object Descriptions , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  G. Butterworth The Origins of Auditory-Visual Perception and Visual Proprioception in Human Development , 1981 .

[22]  Vladimir Pavlovic,et al.  Visual Interpretation of Hand Gestures for Human-Computer Interaction: A Review , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Donald P. Greenberg,et al.  Perceptual color spaces for computer graphics , 1980, SIGGRAPH '80.

[24]  Alberto Finzi,et al.  Autonomous mobile manipulators managing perception and failures , 2001, AGENTS '01.

[25]  Hiroaki Kitano,et al.  Using Vision to Improve Sound Source Separation , 1999, AAAI/IAAI.

[26]  Bruce A. Draper,et al.  Learning control strategies for object recognition , 1997 .

[27]  B. S. Manjunath,et al.  Texture features and learning similarity , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[28]  Sampath Srinivas A polynomial algorithm for computing the optimal repair strategy in a system with independent component failures , 1995, UAI.

[29]  Cristina Sernadas,et al.  Nondeterminism and Uncertainty in the Situation Calculus , 1999, FLAIRS.

[30]  Takeo Kanade,et al.  Automatic generation of object recognition programs , 1988, Proc. IEEE.

[31]  Karen Zita Haigh,et al.  Interleaving Planning and Robot Execution for Asynchronous User Requests , 1998, Auton. Robots.

[32]  David Poole,et al.  Decision Theory, the Situation Calculus and Conditional Plans , 1998, Electron. Trans. Artif. Intell..

[33]  Takashi Matsuyama,et al.  Dynamic memory: architecture for real time integration of visual perception, camera action, and network communication , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[34]  D. J. White,et al.  Decision Theory , 2018, Behavioral Finance for Private Banking.

[35]  Sharon L. Oviatt,et al.  Multimodal Integration - A Statistical View , 1999, IEEE Trans. Multim..

[36]  D C Donderi,et al.  Information measurement of distinctiveness and similarity , 1988, Perception & psychophysics.

[37]  E. Rolls High-level vision: Object recognition and visual cognition, Shimon Ullman. MIT Press, Bradford (1996), ISBN 0 262 21013 4 , 1997 .

[38]  Harry Wechsler,et al.  The FERET database and evaluation procedure for face-recognition algorithms , 1998, Image Vis. Comput..

[39]  David Lindley,et al.  Logical foundations of probability , 1951 .

[40]  Thomas O. Binford,et al.  Bayesian inference in model-based machine vision , 1987, Int. J. Approx. Reason..

[41]  H. Barlow Vision: A computational investigation into the human representation and processing of visual information: David Marr. San Francisco: W. H. Freeman, 1982. pp. xvi + 397 , 1983 .

[42]  David G. Lowe,et al.  Vista: a software environment for computer vision research , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[43]  A. Ravishankar Rao,et al.  Towards a texture naming system: Identifying relevant dimensions of texture , 1993, Vision Research.

[44]  Hideyuki Tamura,et al.  Textural Features Corresponding to Visual Perception , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[45]  Michael H. Coen The future of human-computer interaction or how i learned to stop worrying and love my intelligent r , 1999 .

[46]  John McCarthy,et al.  SOME PHILOSOPHICAL PROBLEMS FROM THE STANDPOINT OF ARTI CIAL INTELLIGENCE , 1987 .

[47]  A. Meltzoff,et al.  Imitation of Facial and Manual Gestures by Human Neonates , 1977, Science.

[48]  Yoshifumi Kitamura,et al.  Three-dimensional data acquisition by trinocular vision , 1989, Adv. Robotics.

[49]  Hiroshi Ishiguro,et al.  Identifying and localizing robots in a multi-robot system environment , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[50]  Fahiem Bacchus,et al.  Representing and reasoning with probabilistic knowledge - a logical approach to probabilities , 1991 .

[51]  R. Hari,et al.  Seeing speech: visual information from lip movements modifies activity in the human auditory cortex , 1991, Neuroscience Letters.

[52]  Marcus W. Hedgcock,et al.  Bayesian inference for model-based segmentation of computed radiographs of the hand , 1993, Artif. Intell. Medicine.

[53]  Hiroshi Mizoguchi,et al.  Convergence analysis of online linear discriminant analysis , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[54]  Yishai A. Feldman,et al.  A probabilistic dynamic logic , 1982, STOC '82.

[55]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[56]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  Robin R. Murphy,et al.  Dempster-Shafer theory for sensor fusion in autonomous mobile robots , 1998, IEEE Trans. Robotics Autom..

[58]  H. Schiffman Sensation and Perception: An Integrated Approach , 1976 .

[59]  Gordon Cheng,et al.  Complex continuous meaningful humanoid interaction: a multi sensory-cue based approach , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[60]  Robert King,et al.  Textural features corresponding to textural properties , 1989, IEEE Trans. Syst. Man Cybern..

[61]  Hiroaki Kitano,et al.  Epipolar geometry based sound localization and extraction for humanoid audition , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[62]  Raymond Reiter,et al.  Open World Planning in the Situation Calculus , 2000, AAAI/IAAI.

[63]  Brian Scassellati,et al.  A Context-Dependent Attention System for a Social Robot , 1999, IJCAI.

[64]  Tod S. Levitt,et al.  Model-Based Influence Diagrams for Machine Vision , 1989, UAI.

[65]  W. H. Sumby,et al.  Visual contribution to speech intelligibility in noise , 1954 .

[66]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[67]  K. J. Evans Representing and Reasoning with Probabilistic Knowledge , 1993 .

[68]  Joshua G. Hale,et al.  Using Humanoid Robots to Study Human Behavior , 2000, IEEE Intell. Syst..

[69]  Matthew Rizzo,et al.  Synesthesia , 1989, Neurology.

[70]  Euripides G. M. Petrakis,et al.  Similarity Searching in Large Image DataBases , 1994 .

[71]  G P Bingham,et al.  Dynamics and the orientation of kinematic forms in visual event recognition. , 1995, Journal of experimental psychology. Human perception and performance.

[72]  Stuart J. Russell,et al.  Object Identification: A Bayesian Analysis with Application to Traffic Surveillance , 1998, Artif. Intell..

[73]  C. Heaps,et al.  Similarity and Features of Natural Textures , 1999 .

[74]  I. Kohler,et al.  The formation and transformation of the perceptual world. , 1963 .

[75]  Wee Kheng Leow,et al.  SCALE AND ORIENTATION-INVARIANT TEXTURE MATCHING FOR IMAGE RETRIEVAL , 2000 .

[76]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[77]  Ronald Fagin,et al.  Probabilities on finite models , 1976, Journal of Symbolic Logic.

[78]  H. Ishiguro,et al.  Development of low-cost and compact omnidirectional vision sensors and their applications , 1998 .

[79]  Joseph Y. Halpern An Analysis of First-Order Logics of Probability , 1989, IJCAI.

[80]  John F. Sowa,et al.  Knowledge representation: logical, philosophical, and computational foundations , 2000 .

[81]  Sebastian Thrun,et al.  Template-Based Recognition of Pose and Motion Gestures On a Mobile Robot , 1998, AAAI/IAAI.

[82]  Steven A. Shafer,et al.  An architecture for sensor fusion in a mobile robot , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[83]  Peter C. Cheeseman,et al.  Bayesian Classification (AutoClass): Theory and Results , 1996, Advances in Knowledge Discovery and Data Mining.

[84]  Ronald Fagin,et al.  Finite-Model Theory - A Personal Perspective , 1990, Theor. Comput. Sci..

[85]  Wolfram Burgard,et al.  Map learning and high-speed navigation in RHINO , 1998 .

[86]  Sebastian Thrun,et al.  Learning Maps for Indoor Mobile Robot Navigation. , 1996 .

[87]  Satoru Hayamizu,et al.  Socially Embedded Learning of the Office-Conversant Mobil Robot Jijo-2 , 1997, IJCAI.

[88]  Hiroshi Ishiguro Distributed Vision System: A Perceptual Information Infrastructure for Robot Navigation , 1997, IJCAI.

[89]  Mohan M. Trivedi,et al.  Real-time target localization and tracking by N-ocular stereo , 2000, Proceedings IEEE Workshop on Omnidirectional Vision (Cat. No.PR00704).

[90]  Ronald Fagin,et al.  Reasoning about knowledge and probability , 1988, JACM.

[91]  John F. Sowa,et al.  Conceptual Structures: Information Processing in Mind and Machine , 1983 .

[92]  G. A. Miller,et al.  Finitary models of language users , 1963 .

[93]  H. Jeffreys A Treatise on Probability , 1922, Nature.

[94]  Liang Chen,et al.  QuickSet: Multimodal Interaction for Simulation Set-up and Control , 1997, ANLP.

[95]  Tetsunori Kobayashi,et al.  Multi-person conversation via multi-modal interface - a robot who communicate with multi-user - , 1999, EUROSPEECH.

[96]  Brian Scassellati,et al.  IEEE Intelligent Systems , 2018, Computer.

[97]  Alexander H. Waibel,et al.  Face recognition in a meeting room , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[98]  A. Tversky Features of Similarity , 1977 .

[99]  Craig Boutilier,et al.  Decision-Theoretic, High-Level Agent Programming in the Situation Calculus , 2000, AAAI/IAAI.

[100]  Hiroaki Kitano,et al.  Active Audition for Humanoid , 2000, AAAI/IAAI.

[101]  Hector J. Levesque,et al.  Reasoning about Noisy Sensors in the Situation Calculus , 1995, IJCAI.

[102]  Donald Geman,et al.  An Active Testing Model for Tracking Roads in Satellite Images , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[103]  Raymond Reiter,et al.  Some contributions to the metatheory of the situation calculus , 1999, JACM.

[104]  David G. Stork,et al.  Speechreading: an overview of image processing, feature extraction, sensory integration and pattern recognition techniques , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.