Learning force and position constraints in human-robot cooperative transportation

Physical interaction between humans and robots arises a large set of challenging problems involving hardware, safety, control and cognitive aspects, among others. In this context, the cooperative (two or more people/robots) transportation of bulky loads in manufacturing plants is a practical example where these challenges are evident. In this paper, we address the problem of teaching a robot collaborative behaviors from human demonstrations. Specifically, we present an approach that combines: probabilistic learning and dynamical systems, to encode the robot's motion along the task. Our method allows us to learn not only a desired path to take the object through, but also, the force the robot needs to apply to the load during the interaction. Moreover, the robot is able to learn and reproduce the task with varying initial and final locations of the object. The proposed approach can be used in scenarios where not only the path to be followed by the transported object matters, but also the force applied to it. Tests were successfully carried out in a scenario where a 7 DOFs backdrivable manipulator learns to cooperate, with a human, to transport an object while satisfying the position and force constraints of the task.

[1]  Toru Tsumugiwa,et al.  Variable impedance control based on estimation of human arm stiffness for human-robot cooperative calligraphic task , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[2]  Maya Cakmak,et al.  Trajectories and keyframes for kinesthetic teaching: A human-robot interaction perspective , 2012, 2012 7th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[3]  Abderrahmane Kheddar,et al.  Motion learning and adaptive impedance for robot control during physical interaction with humans , 2011, 2011 IEEE International Conference on Robotics and Automation.

[4]  Darwin G. Caldwell,et al.  A task-parameterized probabilistic model with minimal intervention control , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[5]  Tamio Arai,et al.  Human-robot cooperative manipulation with motion estimation , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[6]  Kazuhiro Kosuge,et al.  Control of a robot handling an object in cooperation with a human , 1997, Proceedings 6th IEEE International Workshop on Robot and Human Communication. RO-MAN'97 SENDAI.

[7]  Dana Kulic,et al.  Incremental Learning, Clustering and Hierarchy Formation of Whole Body Motion Patterns using Adaptive Hidden Markov Chains , 2008, Int. J. Robotics Res..

[8]  Ryojun Ikeura,et al.  Investigating the impedance characteristic of human arm for development of robots to co-operate with human operators , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[9]  Ryojun Ikeura,et al.  Optimal variable impedance control for a robot and its application to lifting an object with a human , 2002, Proceedings. 11th IEEE International Workshop on Robot and Human Interactive Communication.

[10]  Sandra Hirche,et al.  An experience-driven robotic assistant acquiring human knowledge to improve haptic cooperation , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Carme Torras,et al.  Learning Collaborative Impedance-Based Robot Behaviors , 2013, AAAI.

[12]  Stefan Schaal,et al.  Robot Programming by Demonstration , 2009, Springer Handbook of Robotics.

[13]  Paul Evrard,et al.  Learning collaborative manipulation tasks by demonstration using a haptic interface , 2009, ICAR.

[14]  Clément Gosselin,et al.  General Model of Human-Robot Cooperation Using a Novel Velocity Based Variable Impedance Control , 2007, Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC'07).

[15]  Yuan F. Zheng,et al.  Arm-manipulator coordination for load sharing using reflexive motion control , 1997, Proceedings of International Conference on Robotics and Automation.

[16]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[17]  Elizabeth A. Croft,et al.  Design & Personalization of a Cooperative Carrying Robot Controller , 2012, 2012 IEEE International Conference on Robotics and Automation.

[18]  T. Flash,et al.  The coordination of arm movements: an experimentally confirmed mathematical model , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  Hikaru Inooka,et al.  Variable impedance control of a robot for cooperation with a human , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[20]  Kazuhiro Kosuge,et al.  Dynamic control for robot-human collaboration , 1993, Proceedings of 1993 2nd IEEE International Workshop on Robot and Human Communication.

[21]  Nikolaos G. Tsagarakis,et al.  Statistical dynamical systems for skills acquisition in humanoids , 2012, 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012).

[22]  Carme Torras,et al.  A robot learning from demonstration framework to perform force-based manipulation tasks , 2013, Intelligent Service Robotics.

[23]  Philippe Fraisse,et al.  Experimental study on haptic communication of a human in a shared human-robot collaborative task , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.