Haphazard wiring of simple receptive fields and orientation columns in visual cortex.

The receptive fields of simple cells in visual cortex are composed of elongated on and off subregions. This spatial arrangement is widely thought to be responsible for the generation of orientation selectivity. Neurons with similar orientation preferences cluster in "columns" that tile the cortical surface and form a map of orientation selectivity. It has been proposed that simple cell receptive fields are constructed by the selective pooling of geniculate receptive fields aligned in space. A recent analysis of monosynaptic connections between geniculate and cortical neurons appears to reveal the existence of "wiring rules" that are in accordance with the classical model. The precise origin of the orientation map is unknown, but both genetic and activity-dependent processes are thought to contribute. Here, we put forward the hypothesis that statistical sampling from the retinal ganglion cell mosaic may contribute to the generation of simple cells and provide a blueprint for orientation columns. Results from computer simulations show that the "haphazard wiring" model is consistent with data on the probability of monosynaptic connections and generates orientation columns and maps resembling those found in the cortex. The haphazard wiring hypothesis could be tested by measuring the correlation between the orientation map and the structure of the retinal ganglion cell mosaic of the contralateral eye.

[1]  M. Stryker,et al.  Development of Orientation Preference Maps in Ferret Primary Visual Cortex , 1996, The Journal of Neuroscience.

[2]  Kanti V. Mardia,et al.  Statistics of Directional Data , 1972 .

[3]  A. Parker,et al.  Receptive Field Size in V1 Neurons Limits Acuity for Perceiving Disparity Modulation , 2004, The Journal of Neuroscience.

[4]  P. O. Bishop,et al.  Hypercomplex and simple/complex cell classifications in cat striate cortex. , 1978, Journal of neurophysiology.

[5]  R. Shapley,et al.  Dynamics of Orientation Selectivity in the Primary Visual Cortex and the Importance of Cortical Inhibition , 2003, Neuron.

[7]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[8]  B. G. Cumming,et al.  Responses of primary visual cortical neurons to binocular disparity without depth perception , 1997, Nature.

[9]  J. Movshon,et al.  Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[10]  A Shmuel,et al.  Coexistence of linear zones and pinwheels within orientation maps in cat visual cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Reid R. Clay,et al.  Specificity and strength of retinogeniculate connections. , 1999, Journal of neurophysiology.

[12]  R. von der Heydt,et al.  Coding of Border Ownership in Monkey Visual Cortex , 2000, The Journal of Neuroscience.

[13]  Luis M Martinez,et al.  Synaptic physiology of the flow of information in the cat's visual cortex in vivo , 2002, The Journal of physiology.

[14]  Y. Frégnac,et al.  Early development of visual cortical cells in normal and dark‐reared kittens: relationship between orientation selectivity and ocular dominance. , 1978, The Journal of physiology.

[15]  D. Ferster,et al.  Strength and Orientation Tuning of the Thalamic Input to Simple Cells Revealed by Electrically Evoked Cortical Suppression , 1998, Neuron.

[16]  Amiram Grinvald,et al.  Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns , 1991, Nature.

[17]  B. Chapman,et al.  Cortical Cell Orientation Selectivity Fails to Develop in the Absence of ON-Center Retinal Ganglion Cell Activity , 2000, The Journal of Neuroscience.

[18]  KD Miller A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  N. Swindale The development of topography in the visual cortex: a review of models. , 1996, Network.

[20]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[21]  R Clay Reid,et al.  Laminar processing of stimulus orientation in cat visual cortex , 2002, The Journal of physiology.

[22]  P. Heggelund Quantitative studies of enhancement and suppression zones in the receptive field of simple cells in cat striate cortex. , 1986, The Journal of physiology.

[23]  M. V. Tsodyks,et al.  Intracortical origin of visual maps , 2001, Nature Neuroscience.

[24]  W. Singer,et al.  Development of Orientation Preference Maps in Area 18 of Kitten Visual Cortex , 1997, The European journal of neuroscience.

[25]  P. Hammond Cat retinal ganglion cells: size and shape of receptive field centres , 1974, The Journal of physiology.

[26]  B. B. Lee,et al.  A comparison of visual responses of cat lateral geniculate nucleus neurones with those of ganglion cells afferent to them. , 1985, The Journal of physiology.

[27]  I. Ohzawa,et al.  Encoding of binocular disparity by complex cells in the cat's visual cortex. , 1996, Journal of neurophysiology.

[28]  D. G. Albrecht,et al.  Motion selectivity and the contrast-response function of simple cells in the visual cortex , 1991, Visual Neuroscience.

[29]  I. Ohzawa,et al.  Neural mechanisms for processing binocular information I. Simple cells. , 1999, Journal of neurophysiology.

[30]  R. Shapley,et al.  New perspectives on the mechanisms for orientation selectivity , 1997, Current Opinion in Neurobiology.

[31]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[32]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial summation. , 1993, Journal of neurophysiology.

[33]  A. Parker,et al.  Quantitative analysis of the responses of V1 neurons to horizontal disparity in dynamic random-dot stereograms. , 2002, Journal of neurophysiology.

[34]  J. A. Hirsch Synaptic physiology and receptive field structure in the early visual pathway of the cat. , 2003, Cerebral cortex.

[35]  W. Levick,et al.  Simultaneous recording of input and output of lateral geniculate neurones. , 1971, Nature: New biology.

[36]  F. Sengpiel,et al.  Intrinsic and environmental factors in the development of functional maps in cat visual cortex , 1998, Neuropharmacology.

[37]  Dmitri B. Chklovskii,et al.  Orientation Preference Patterns in Mammalian Visual Cortex A Wire Length Minimization Approach , 2001, Neuron.

[38]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[39]  P. Heggelund,et al.  Receptive field organization of simple cells in cat striate cortex , 1981, Experimental brain research.

[40]  D. Heeger Half-squaring in responses of cat striate cells , 1992, Visual Neuroscience.

[41]  K. Obermayer,et al.  Geometry of orientation and ocular dominance columns in monkey striate cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  J. Hegdé,et al.  Selectivity for Complex Shapes in Primate Visual Area V2 , 2000, The Journal of Neuroscience.

[43]  R. Soodak The retinal ganglion cell mosaic defines orientation columns in striate cortex. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[44]  T. M. Mayhew,et al.  Anatomy of the Cortex: Statistics and Geometry. , 1991 .

[45]  R. Shapley,et al.  An egalitarian network model for the emergence of simple and complex cells in visual cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[46]  G. Orban,et al.  Processing of kinetically defined boundaries in areas V1 and V2 of the macaque monkey. , 2000, Journal of neurophysiology.

[47]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[48]  P. Heggelund Receptive field organization of complex cells in cat striate cortex , 2004, Experimental Brain Research.

[49]  A. Peters,et al.  Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. , 1993, Cerebral cortex.

[50]  Bruce G. Cumming,et al.  A Simple Account of Cyclopean Edge Responses in Macaque V2 , 2006, The Journal of Neuroscience.

[51]  Frances S. Chance,et al.  Complex cells as cortically amplified simple cells , 1999, Nature Neuroscience.

[52]  Prof. Dr. Valentino Braitenberg,et al.  Anatomy of the Cortex , 1991, Studies of Brain Function.

[53]  Minami Ito,et al.  Representation of Angles Embedded within Contour Stimuli in Area V2 of Macaque Monkeys , 2004, The Journal of Neuroscience.

[54]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[55]  B. Boycott,et al.  Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[56]  F. Qiu,et al.  Figure and Ground in the Visual Cortex: V2 Combines Stereoscopic Cues with Gestalt Rules , 2005, Neuron.

[57]  D. Ferster,et al.  The axonal arborizations of lateral geniculate neurons in the striate cortex of the cat , 1978, The Journal of comparative neurology.

[58]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[59]  G. DeAngelis,et al.  Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. , 1997, Journal of neurophysiology.

[60]  Tobias Bonhoeffer,et al.  Reverse occlusion leads to a precise restoration of orientation preference maps in visual cortex , 1994, Nature.

[61]  Hong Zhou,et al.  Representation of stereoscopic edges in monkey visual cortex , 2000, Vision Research.

[62]  D. Hubel,et al.  Integrative action in the cat's lateral geniculate body , 1961, The Journal of physiology.

[63]  Li Zhaoping,et al.  Border Ownership from Intracortical Interactions in Visual Area V2 , 2005, Neuron.

[64]  H. Wässle,et al.  The structural correlate of the receptive field centre of alpha ganglion cells in the cat retina. , 1983, The Journal of physiology.

[65]  F. Smith,et al.  ROTATION AXIS AND MAGNETIC FIELD AXIS OF THE CRAB NEBULA PULSAR PSR 0532 + 22. , 1971 .

[66]  D. Whitteridge,et al.  Innervation of cat visual areas 17 and 18 by physiologically identified X‐ and Y‐ type thalamic afferents. II. Identification of postsynaptic targets by GABA immunocytochemistry and Golgi impregnation , 1985, The Journal of comparative neurology.

[67]  C. Shatz,et al.  Synaptic Activity and the Construction of Cortical Circuits , 1996, Science.

[68]  K. Miller,et al.  Correlation-Based Development of Ocularly Matched Orientation and Ocular Dominance Maps: Determination of Required Input Activities , 1998, The Journal of Neuroscience.

[69]  G. Boynton,et al.  Visual Cortex: The Continuing Puzzle of Area V2 , 2004, Current Biology.

[70]  R. Lotto,et al.  Responses of human visual cortex to uniform surfaces , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[71]  David H. Goldberg,et al.  Structured Long-Range Connections Can Provide a Scaffold for Orientation Maps , 2000, The Journal of Neuroscience.

[72]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[73]  T. Bonhoeffer,et al.  Development of orientation preference in the mammalian visual cortex. , 1999, Journal of neurobiology.

[74]  R. Reid,et al.  Rules of Connectivity between Geniculate Cells and Simple Cells in Cat Primary Visual Cortex , 2001, The Journal of Neuroscience.

[75]  P. Lennie,et al.  Color vision: Putting it together , 2000, Current Biology.

[76]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[77]  M. Stryker,et al.  The role of visual experience in the development of columns in cat visual cortex. , 1998, Science.