Mobile robot navigation using passivity-based MPC

This paper presents a novel mobile vehicle navigation algorithm based on the stability analysis of the model predictive control approach. The energy-shaping technique is performed with the navigation function to obtain a new virtual vehicle model that generates candidate feasible trajectories for the motion planner. Stability of the nonlinear model predictive control system is obtained by the passivity concept providing a guaranteed task completion. The proposed approach is adapted for a unicycle mobile vehicle but the work suggests that the passivity-based nonlinear model predictive control concept can be adapted for the navigation purposes for a broad range of mobile vehicle models.

[1]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[2]  T. Raff,et al.  Nonlinear Model Predictive Control: A Passivity-Based Approach , 2007 .

[3]  Yoji Kuroda,et al.  High-speed navigation of unmanned ground vehicles on uneven terrain using potential fields , 2007, Robotica.

[4]  J. Willems Dissipative dynamical systems Part II: Linear systems with quadratic supply rates , 1972 .

[5]  A. Isidori,et al.  Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems , 1991 .

[6]  Mrdjan J. Jankovic,et al.  Constructive Nonlinear Control , 2011 .

[7]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[8]  Oliver Brock,et al.  High-speed navigation using the global dynamic window approach , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[9]  Shuzhi Sam Ge,et al.  Dynamic Motion Planning for Mobile Robots Using Potential Field Method , 2002, Auton. Robots.

[10]  Romeo Ortega,et al.  Passivity-based Control of Euler-Lagrange Systems , 1998 .

[11]  Matthew J. Spenko Hazard avoidance for high-speed rough-terrain unmanned ground vehicles , 2005 .

[12]  Reid G. Simmons,et al.  The curvature-velocity method for local obstacle avoidance , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[13]  D. Youla,et al.  Bounded Real Scattering Matrices and the Foundations of Linear Passive Network Theory , 1959 .

[14]  Karl Iagnemma Navigation and Hazard Avoidance for High-Speed Unmanned Ground Vehicles in Rough Terrain , 2008 .

[15]  Steven Dubowsky,et al.  Hazard avoidance for high‐speed mobile robots in rough terrain , 2006, J. Field Robotics.

[16]  D.L. Elliott,et al.  Feedback systems: Input-output properties , 1976, Proceedings of the IEEE.

[17]  Romeo Ortega,et al.  An observer-based set-point controller for robot manipulators with flexible joints , 1993 .

[18]  R. Ortega Passivity-based control of Euler-Lagrange systems : mechanical, electrical and electromechanical applications , 1998 .

[19]  Kostas J. Kyriakopoulos,et al.  Nonholonomic navigation and control of cooperating mobile manipulators , 2003, IEEE Trans. Robotics Autom..

[20]  Jean-Claude Latombe,et al.  Numerical potential field techniques for robot path planning , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[21]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[22]  Petter Ögren,et al.  A convergent dynamic window approach to obstacle avoidance , 2005, IEEE Transactions on Robotics.

[23]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[24]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[25]  J. Doyle,et al.  NONLINEAR OPTIMAL CONTROL: A CONTROL LYAPUNOV FUNCTION AND RECEDING HORIZON PERSPECTIVE , 1999 .

[26]  G. Swaminathan Robot Motion Planning , 2006 .

[27]  B. Anderson,et al.  Nonlinear regulator theory and an inverse optimal control problem , 1973 .

[28]  Roland Siegwart,et al.  Smooth and efficient obstacle avoidance for a tour guide robot , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[29]  P. Moylan,et al.  The stability of nonlinear dissipative systems , 1976 .