Estimating Image Motion in Layers: The “Skin and Bones” Model

This paper describes a method for estimating optical flow that strikes a balance between the flexibility of regularization techniques and the robustness and accuracy of area-based regression techniques. The approach assumes that image motion can be represented by an affine flow model within local image patchs. Since some image regions may not have sufficient information to estimate an affine motion model robustly, we define a spatial smoothness constraint on the affine flow parameters of neighboring patches. We refer to this as a “Skin and Bones” model in which the affine patches can be thought of as rigid patches of “bone” connected by a flexible “skin.” Since local image patches may contain multiple motions we use a layered representation for the affine bones. With the possibility of multiple motions at a given point, standard regularization schemes cannot be used to smooth the multiple sets of affine parameters. We therefore develop a new framework for regularization with transparency that can applied to produce a smoothed layered motion representation. The motion estimation problem, with layered locally affine bones and transparent regularization, is formulated as an objective function that is minimized using a variant of the EM-algorithm. Experiments with synthetic and natural images are provided throughout the paper to illustrate the method. Submitted as a Regular Paper.

[1]  R. D. Lockhart,et al.  The Human Figure in Motion , 1957 .

[2]  Y. Ho,et al.  A Bayesian approach to problems in stochastic estimation and control , 1964 .

[3]  Andrea J. van Doorn,et al.  Invariant Properties of the Motion Parallax Field due to the Movement of Rigid Bodies Relative to an Observer , 1975 .

[4]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[5]  Claude L. Fennema,et al.  Velocity determination in scenes containing several moving objects , 1979 .

[6]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[7]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[8]  J. Marroquín Surface Reconstruction Preserving Discontinuities , 1984 .

[9]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[11]  Gilad Adiv,et al.  Determining Three-Dimensional Motion and Structure from Optical Flow Generated by Several Moving Objects , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Allen M. Waxman,et al.  Contour Evolution, Neighborhood Deformation, and Global Image Flow: Planar Surfaces in Motion , 1985 .

[13]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Samuel Kotz,et al.  Encyclopedia of Statistical Sciences: Volume 5 , 1986 .

[15]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[16]  Hans-Hellmut Nagel,et al.  An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Joseph K. Kearney,et al.  Optical Flow Estimation: An Error Analysis of Gradient-Based Methods with Local Optimization , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[19]  Stuart Geman,et al.  Statistical methods for tomographic image reconstruction , 1987 .

[20]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[21]  C. Jennison,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[22]  Hans-Hellmut Nagel,et al.  On the Estimation of Optical Flow: Relations between Different Approaches and Some New Results , 1987, Artif. Intell..

[23]  Alessandro Verri,et al.  Against Quantitative Optical Flow , 1987 .

[24]  David W. Murray,et al.  Scene Segmentation from Visual Motion Using Global Optimization , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Geoffrey J. McLachlan,et al.  Mixture models : inference and applications to clustering , 1989 .

[26]  D. Shulman,et al.  Regularization of discontinuous flow fields , 1989, [1989] Proceedings. Workshop on Visual Motion.

[27]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[28]  Shmuel Peleg,et al.  Computing two motions from three frames , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[29]  Takeo Kanade,et al.  A locally adaptive window for signal matching , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[30]  Patrick Bouthemy,et al.  Multiframe-based identification of mobile components of a scene with a moving camera , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[31]  A. Pentland,et al.  Robust estimation of a multi-layered motion representation , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[32]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[33]  Ajit Singh,et al.  Optic flow computation : a unified perspective , 1991 .

[34]  Michael J. Black,et al.  Robust dynamic motion estimation over time , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[35]  Eric Dubois,et al.  Bayesian Estimation of Motion Vector Fields , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  P. Anandan,et al.  Hierarchical Model-Based Motion Estimation , 1992, ECCV.

[37]  Marta Braun,et al.  Picturing Time: The Work of Etienne-Jules Marey (1830-1904) , 1995 .

[38]  Alessandro Verri,et al.  Identifying multiple motions from optical flow , 1992, ECCV.

[39]  Richard Szeliski,et al.  Surface modeling with oriented particle systems , 1992, SIGGRAPH.

[40]  Shmuel Peleg,et al.  A Three-Frame Algorithm for Estimating Two-Component Image Motion , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  David J. Fleet Measurement of image velocity , 1992 .

[42]  Ajit Singh,et al.  Incremental estimation of image flow using a Kalman filter , 1992, J. Vis. Commun. Image Represent..

[43]  Michal Irani,et al.  Detecting and Tracking Multiple Moving Objects Using Temporal Integration , 1992, ECCV.

[44]  Jitendra Malik,et al.  Robust computation of optical flow in a multi-scale differential framework , 1993, 1993 (4th) International Conference on Computer Vision.

[45]  Minoru Asada,et al.  The optimal partition of moving edge segments , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[46]  Edward H. Adelson,et al.  Layered representation for motion analysis , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[47]  Michael J. Black,et al.  Mixture models for optical flow computation , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[48]  Yoshiaki Shirai,et al.  Segmentation and 2D motion estimation by region fragments , 1993, 1993 (4th) International Conference on Computer Vision.

[49]  Daniel J. Kersten,et al.  Multi-layer surface segmentation using energy minimization , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[50]  Edward H. Adelson,et al.  Representing moving images with layers , 1994, IEEE Trans. Image Process..

[51]  Michael J. Black,et al.  The outlier process: unifying line processes and robust statistics , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[52]  Eric Mjolsness,et al.  New Algorithms for 2D and 3D Point Matching: Pose Estimation and Correspondence , 1998, NIPS.

[53]  Michael J. Black Recursive Non-Linear Estimation of Discontinuous Flow Fields , 1994, ECCV.

[54]  Georgios B. Giannakis,et al.  Spatio-temporal approach for time-varying image motion estimation , 1994, Proceedings of 1st International Conference on Image Processing.

[55]  Philippe Schroeter,et al.  Time-varying motion estimation using orthogonal polynomials and applications , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[56]  Hans-Hellmut Nagel,et al.  Optical Flow Estimation: Advances and Comparisons , 1994, ECCV.

[57]  Michael J. Black,et al.  Time to contact from active tracking of motion boundaries , 1994, Other Conferences.

[58]  Josef Bigün,et al.  Segmentation of moving objects by robust motion parameter estimation over multiple frames , 1994, ECCV.

[59]  P. Anandan,et al.  Accurate computation of optical flow by using layered motion representations , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[60]  Edward H. Adelson,et al.  Perceptually Organized Em: a Framework for Motion Segmentation That Combines Information about Form and Motion , 1995 .

[61]  Serge Ayer,et al.  Sequential and competitive methods for estimation of multiple motions , 1995 .

[62]  Jean-Marc Odobez,et al.  MRF-based motion segmentation exploiting a 2D motion model robust estimation , 1995, Proceedings., International Conference on Image Processing.

[63]  Michael J. Black,et al.  Tracking and recognizing rigid and non-rigid facial motions using local parametric models of image motion , 1995, Proceedings of IEEE International Conference on Computer Vision.

[64]  Harry Shum,et al.  Motion estimation with quadtree splines , 1995, Proceedings of IEEE International Conference on Computer Vision.

[65]  Jean-Marc Odobez,et al.  Robust Multiresolution Estimation of Parametric Motion Models , 1995, J. Vis. Commun. Image Represent..

[66]  Steven D. Blostein,et al.  Motion-based object segmentation and estimation using the MDL principle , 1995, IEEE Trans. Image Process..

[67]  Alex Pentland,et al.  Cooperative Robust Estimation Using Layers of Support , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[68]  Michael J. Black,et al.  Robust estimation of multiple surface shapes from occluded textures , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[69]  Harpreet S. Sawhney,et al.  Layered representation of motion video using robust maximum-likelihood estimation of mixture models and MDL encoding , 1995, Proceedings of IEEE International Conference on Computer Vision.

[70]  Allan D. Jepson,et al.  Computational Perception of Scene Dynamics , 1996, ECCV.

[71]  Michael J. Black,et al.  Estimating Optical Flow in Segmented Images Using Variable-Order Parametric Models With Local Deformations , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[72]  Harpreet S. Sawhney,et al.  Compact Representations of Videos Through Dominant and Multiple Motion Estimation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[73]  Michael J. Black,et al.  Skin and bones: multi-layer, locally affine, optical flow and regularization with transparency , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[74]  Michael J. Black,et al.  Cardboard people: a parameterized model of articulated image motion , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[75]  Michael J. Black,et al.  Mixture Models for Image Representation , 1996 .

[76]  Michael Isard,et al.  Contour Tracking by Stochastic Propagation of Conditional Density , 1996, ECCV.

[77]  Edward H. Adelson,et al.  A unified mixture framework for motion segmentation: incorporating spatial coherence and estimating the number of models , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[78]  Andrea Giachetti,et al.  Refinement of Optical Flow Estimation and Detection of Motion Edges , 1996, ECCV.

[79]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[80]  David J. Fleet,et al.  Learning parameterized models of image motion , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[81]  David Suter,et al.  Optic flow calculation using robust statistics , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[82]  Yair Weiss,et al.  Smoothness in layers: Motion segmentation using nonparametric mixture estimation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[83]  Larry S. Davis,et al.  Temporal multi-scale models for flow and acceleration , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[84]  Nuno Vasconcelos,et al.  Empirical Bayesian EM-based motion segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[85]  David J. Fleet,et al.  A framework for modeling appearance change in image sequences , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[86]  Richard Szeliski,et al.  A layered approach to stereo reconstruction , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[87]  Nuno Vasconcelos,et al.  A spatiotemporal motion model for video summarization , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[88]  Jorma Rissanen,et al.  Stochastic Complexity in Statistical Inquiry , 1989, World Scientific Series in Computer Science.

[89]  Patrick Pérez,et al.  A multigrid approach for hierarchical motion estimation , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[90]  Takeo Kanade,et al.  Optical flow estimation using wavelet motion model , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[91]  Harry Shum,et al.  Construction and refinement of panoramic mosaics with global and local alignment , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[92]  Michael J. Black,et al.  Summarization of videotaped presentations: automatic analysis of motion and gesture , 1998, IEEE Trans. Circuits Syst. Video Technol..

[93]  Alan L. Yuille,et al.  Visual motion estimation and prediction: a probabilistic network model for temporal coherence , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[94]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[95]  D. Pfeffermann,et al.  Small area estimation , 2011 .

[96]  Larry H. Matthies,et al.  Kalman filter-based algorithms for estimating depth from image sequences , 1989, International Journal of Computer Vision.

[97]  Yvan G. Leclerc,et al.  Constructing simple stable descriptions for image partitioning , 1989, International Journal of Computer Vision.

[98]  David J. Fleet,et al.  Computation of component image velocity from local phase information , 1990, International Journal of Computer Vision.

[99]  A. Verri,et al.  A computational approach to motion perception , 1988, Biological Cybernetics.

[100]  J. Koenderink,et al.  Extraction of motion parallax structure in the visual system I , 2004, Biological Cybernetics.

[101]  Richard Szeliski,et al.  Spline-Based Image Registration , 1997, International Journal of Computer Vision.

[102]  Michael J. Black,et al.  On the unification of line processes, outlier rejection, and robust statistics with applications in early vision , 1996, International Journal of Computer Vision.

[103]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[104]  Michael J. Black,et al.  Recognizing Facial Expressions in Image Sequences Using Local Parameterized Models of Image Motion , 1997, International Journal of Computer Vision.

[105]  Jin Luo,et al.  Analog hardware for detecting discontinuities in early vision , 1990, International Journal of Computer Vision.

[106]  P. Anandan,et al.  A computational framework and an algorithm for the measurement of visual motion , 1987, International Journal of Computer Vision.

[107]  Michal Irani,et al.  Computing occluding and transparent motions , 1994, International Journal of Computer Vision.

[108]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[109]  Hans-Hellmut Nagel,et al.  Optical flow estimation and the interaction between measurement errors at adjacent pixel positions , 1995, International Journal of Computer Vision.

[110]  Patrick Bouthemy,et al.  Motion segmentation and qualitative dynamic scene analysis from an image sequence , 1993, International Journal of Computer Vision.

[111]  Jitendra Malik,et al.  Robust computation of optical flow in a multi-scale differential framework , 2005, International Journal of Computer Vision.