Standing Waves and Traveling Waves Distinguish Two Circuits in Visual Cortex

[1]  F. Chavane,et al.  Cortical response field dynamics in cat visual cortex. , 2007, Cerebral cortex.

[2]  M. Carandini,et al.  Mapping of stimulus energy in primary visual cortex. , 2005, Journal of neurophysiology.

[3]  R. Reid,et al.  Receptive field structure varies with layer in the primary visual cortex , 2005, Nature Neuroscience.

[4]  Amiram Grinvald,et al.  VSDI: a new era in functional imaging of cortical dynamics , 2004, Nature Reviews Neuroscience.

[5]  Nicholas J. Priebe,et al.  The contribution of spike threshold to the dichotomy of cortical simple and complex cells , 2004, Nature Neuroscience.

[6]  David Fitzpatrick,et al.  A morphological basis for orientation tuning in primary visual cortex , 2004, Nature Neuroscience.

[7]  Robert A. Frazor,et al.  Visual cortex neurons of monkeys and cats: temporal dynamics of the spatial frequency response function. , 2004, Journal of neurophysiology.

[8]  F. Chavane,et al.  Imaging cortical correlates of illusion in early visual cortex , 2004, Nature.

[9]  A. Grinvald,et al.  Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[10]  M. Volgushev,et al.  Independence of visuotopic representation and orientation map in the visual cortex of the cat , 2003, The European journal of neuroscience.

[11]  Jonathan C Horton,et al.  The Representation of Retinal Blood Vessels in Primate Striate Cortex , 2003, The Journal of Neuroscience.

[12]  Leonard E. White,et al.  Mapping multiple features in the population response of visual cortex , 2003, Nature.

[13]  R. Shapley,et al.  Dynamics of Orientation Selectivity in the Primary Visual Cortex and the Importance of Cortical Inhibition , 2003, Neuron.

[14]  Barry W. Connors,et al.  Widely integrative properties of layer 5 pyramidal cells support a role for processing of extralaminar synaptic inputs in rat neocortex , 2003, Neuroscience Letters.

[15]  Michael P. Stryker,et al.  New Paradigm for Optical Imaging Temporally Encoded Maps of Intrinsic Signal , 2003, Neuron.

[16]  D. L. Adams,et al.  A Precise Retinotopic Map of Primate Striate Cortex Generated from the Representation of Angioscotomas , 2003, The Journal of Neuroscience.

[17]  A. Grinvald,et al.  Spatiotemporal Dynamics of Sensory Responses in Layer 2/3 of Rat Barrel Cortex Measured In Vivo by Voltage-Sensitive Dye Imaging Combined with Whole-Cell Voltage Recordings and Neuron Reconstructions , 2003, The Journal of Neuroscience.

[18]  Jonathan R. Polimeni,et al.  The V1-V2-V3 complex: quasiconformal dipole maps in primate striate and extra-striate cortex , 2002, Neural Networks.

[19]  D. Fitzpatrick,et al.  Spatial coding of position and orientation in primary visual cortex , 2002, Nature Neuroscience.

[20]  D. Ringach,et al.  On the classification of simple and complex cells , 2002, Vision Research.

[21]  D. Ringach,et al.  Dynamics of Spatial Frequency Tuning in Macaque V1 , 2002, The Journal of Neuroscience.

[22]  R. Shapley,et al.  Suppression of neural responses to nonoptimal stimuli correlates with tuning selectivity in macaque V1. , 2002, Journal of neurophysiology.

[23]  P. H. Schiller,et al.  Spatial frequency and orientation tuning dynamics in area V1 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[24]  A. Grinvald,et al.  Dynamics and Constancy in Cortical Spatiotemporal Patterns of Orientation Processing , 2002, Science.

[25]  D. Contreras,et al.  Voltage-Sensitive Dye Imaging of Neocortical Spatiotemporal Dynamics to Afferent Activation Frequency , 2001, The Journal of Neuroscience.

[26]  J. -. Wu,et al.  Spatiotemporal properties of an evoked population activity in rat sensory cortical slices. , 2001, Journal of neurophysiology.

[27]  G. Blasdel,et al.  Functional Retinotopy of Monkey Visual Cortex , 2001, The Journal of Neuroscience.

[28]  D. Ferster,et al.  Dynamics of the orientation-tuned membrane potential response in cat primary visual cortex , 2001, Nature Neuroscience.

[29]  R. Reid,et al.  Rules of Connectivity between Geniculate Cells and Simple Cells in Cat Primary Visual Cortex , 2001, The Journal of Neuroscience.

[30]  D. Kleinfeld,et al.  Traveling Electrical Waves in Cortex Insights from Phase Dynamics and Speculation on a Computational Role , 2001, Neuron.

[31]  M. Carandini,et al.  Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. , 2000, Journal of neurophysiology.

[32]  Amiram Grinvald,et al.  Visual cortex maps are optimized for uniform coverage , 2000, Nature Neuroscience.

[33]  M. Carandini,et al.  Membrane Potential and Firing Rate in Cat Primary Visual Cortex , 2000, The Journal of Neuroscience.

[34]  A. Grinvald,et al.  Imaging Cortical Dynamics at High Spatial and Temporal Resolution with Novel Blue Voltage-Sensitive Dyes , 1999, Neuron.

[35]  I. Ohzawa,et al.  Functional Micro-Organization of Primary Visual Cortex: Receptive Field Analysis of Nearby Neurons , 1999, The Journal of Neuroscience.

[36]  V. Bringuier,et al.  Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. , 1999, Science.

[37]  D. Senseman,et al.  Spatiotemporal structure of depolarization spread in cortical pyramidal cell populations evoked by diffuse retinal light flashes , 1999, Visual Neuroscience.

[38]  Bartlett W. Mel,et al.  Translation-Invariant Orientation Tuning in Visual “Complex” Cells Could Derive from Intradendritic Computations , 1998, The Journal of Neuroscience.

[39]  D. Kleinfeld,et al.  Functional study of the rat cortical microcircuitry with voltage-sensitive dye imaging of neocortical slices. , 1997, Cerebral cortex.

[40]  D. Kleinfeld,et al.  Visual stimuli induce waves of electrical activity in turtle cortex. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[41]  C. Gilbert,et al.  Distortions of visuotopic map match orientation singularities in primary visual cortex , 1997, Nature.

[42]  R. Shapley,et al.  Dynamics of orientation tuning in macaque primary visual cortex , 1997, Nature.

[43]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[44]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[45]  A. Grinvald,et al.  Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses , 1996, Science.

[46]  T R Vidyasagar,et al.  Dynamics of the orientation tuning of postsynaptic potentials in the cat visual cortex , 1995, Visual Neuroscience.

[47]  L. C. Katz,et al.  Emergence of functional circuits in ferret visual cortex visualized by optical imaging , 1995, Neuron.

[48]  A Grinvald,et al.  Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex. , 1995, Journal of neurophysiology.

[49]  R. Frostig,et al.  Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  D. Ferster,et al.  Linearity of summation of synaptic potentials underlying direction selectivity in simple cells of the cat visual cortex. , 1993, Science.

[51]  Jian-Zhong Guo,et al.  Electrophysiological identification of horizontal synaptic connections in rat visual cortex in vitro , 1993, Neuroscience Letters.

[52]  R. V. Novikova,et al.  Dynamics of orientation tuning in the cat striate cortex neurons , 1993, Neuroscience.

[53]  Haim Sompolinsky,et al.  Stimulus-Dependent Synchronization of Neuronal Assemblies , 1993, Neural Computation.

[54]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial summation. , 1993, Journal of neurophysiology.

[55]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. I. General characteristics and postnatal development. , 1993, Journal of neurophysiology.

[56]  R. Shapley,et al.  Broadband temporal stimuli decrease the integration time of neurons in cat striate cortex , 1992, Visual Neuroscience.

[57]  A. L. Humphrey,et al.  Temporal-frequency tuning of direction selectivity in cat visual cortex , 1992, Visual Neuroscience.

[58]  C. Schroeder,et al.  Striate cortical contribution to the surface-recorded pattern-reversal vep in the alert monkey , 1991, Vision Research.

[59]  C. Gilbert,et al.  Synaptic physiology of horizontal connections in the cat's visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  T. Wiesel,et al.  Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  D. Regan,et al.  Objective evidence for phase-independent spatial frequency analysis in the human visual pathway , 1988, Vision Research.

[62]  D. Whitteridge,et al.  Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. , 1984, The Journal of physiology.

[63]  V Zemon,et al.  Visual evoked potentials: evidence for lateral interactions. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[64]  D. Pollen,et al.  Phase relationships between adjacent simple cells in the visual cortex. , 1981, Science.

[65]  L. Palmer,et al.  Retinotopic organization of areas 18 and 19 in the cat , 1979, The Journal of comparative neurology.

[66]  J. Movshon,et al.  Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. , 1978, The Journal of physiology.

[67]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[68]  L. Palmer,et al.  The retinotopic organization of area 17 (striate cortex) in the cat , 1978, The Journal of comparative neurology.

[69]  C. Gilbert Laminar differences in receptive field properties of cells in cat primary visual cortex , 1977, The Journal of physiology.

[70]  K. Albus,et al.  A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat , 1975, Experimental Brain Research.

[71]  K. Albus A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat , 1975, Experimental Brain Research.

[72]  C. Gilbert,et al.  The projections of cells in different layers of the cat's visual cortex , 1975, The Journal of comparative neurology.

[73]  D. Hubel,et al.  Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor , 1974, The Journal of comparative neurology.

[74]  Charles G. Gross,et al.  Horizontal Propagation of Excitation in Rat Visual Cortical Slices Revealed by Optical Imaging , 2006 .

[75]  D. Tolhurst,et al.  Factors influencing the temporal phase of response to bar and grating stimuli for simple cells in the cat striate cortex , 2004, Experimental Brain Research.

[76]  T. Kasamatsu,et al.  Spatially distributed responses induced by contrast reversal in cat visual cortex , 2004, Experimental Brain Research.

[77]  L. C. Katz,et al.  Spatiotemporal patterns of excitation and inhibition evoked by the horizontal network in layer 2/3 of ferret visual cortex. , 2003, Journal of neurophysiology.

[78]  T. Bonhoeffer,et al.  Optical Imaging of Functional Architecture in Cat Primary Visual Cortex , 2002 .

[79]  A. Peters,et al.  The cat primary visual cortex , 2002 .

[80]  BsnNr C. Srorn,et al.  CLASSIFYING SIMPLE AND COMPLEX CELLS ON THE BASIS OF RESPONSE MODULATION , 2002 .

[81]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[82]  W. Pritchard,et al.  The brain in fractal time: 1/f-like power spectrum scaling of the human electroencephalogram. , 1992, The International journal of neuroscience.

[83]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.