Parameter extraction for identifying product type of mckibben pneumatic artificial muscles

This study demonstrates that various unknown parameters used in nonlinear models of McKibben pneumatic artificial muscles (PAMs) can characterize the features of McKibben PAM products. By focusing on a parameter space in the PAM model, this study employs a support vector machine (SVM) to determine which unknown parameters characterize each PAM product. For validation, three different PAM products are analyzed to observe whether the resulting minimal combination of parameters will help to identify the product. The observation is expected to provide prior PAM knowledge that can be used to develop efficient parameter estimation and capture aging degradation, which are important for robust estimation and control in PAM systems.

[1]  Qian Shen,et al.  A unified feature parameter extraction strategy based on system identification for the Buck converter with linear or nonlinear loads , 2016, IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society.

[2]  Gen Endo,et al.  A walking assistive device with intention detection using back-driven pneumatic artificial muscles , 2015, 2015 IEEE International Conference on Rehabilitation Robotics (ICORR).

[3]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[4]  Arturo Rojas-Moreno Parameter extraction of an induction motor with gearbox for dynamic simulation , 2016, 2016 IEEE ANDESCON.

[5]  K. Tadano,et al.  Achieving Haptic Perception in Forceps’ Manipulator Using Pneumatic Artificial Muscle , 2013, IEEE/ASME Transactions on Mechatronics.

[6]  Jun Morimoto,et al.  Torque and variable stiffness control for antagonistically driven pneumatic muscle actuators via a stable force feedback controller , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[7]  Kenji Sugimoto,et al.  Application of game-theoretic learning to gray-box modeling of McKibben pneumatic artificial muscle systems , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Robert M. Sanner,et al.  Nonlinear Control of Robotic Manipulators Driven by Pneumatic Artificial Muscles , 2016, IEEE/ASME Transactions on Mechatronics.

[9]  Blake Hannaford,et al.  Measurement and modeling of McKibben pneumatic artificial muscles , 1996, IEEE Trans. Robotics Autom..

[10]  Kenji Kawashima,et al.  Application of robots using pneumatic artificial rubber muscles for operating construction machines , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[11]  Pierre Lopez,et al.  Modeling and control of McKibben artificial muscle robot actuators , 2000 .

[12]  Kenji Sugimoto,et al.  Identification procedure for McKibben pneumatic artificial muscle systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  Tae-Yong Choi,et al.  Position and Compliance Control of a Pneumatic Muscle Actuated Manipulator for Enhanced Safety , 2011, IEEE Transactions on Control Systems Technology.

[14]  Christian Fager,et al.  Optimal parameter extraction and uncertainty estimation in intrinsic FET small-signal models , 2002 .

[15]  George Nikolakopoulos,et al.  Piecewise Affine Modeling and Constrained Optimal Control for a Pneumatic Artificial Muscle , 2014, IEEE Transactions on Industrial Electronics.

[16]  Han Meng,et al.  Parameter selection in SVM with RBF kernel function , 2012, World Automation Congress 2012.

[17]  Francesco Amato,et al.  Identification and modelling of the friction-induced hysteresis in pneumatic actuators for biomimetic robots , 2014, 22nd Mediterranean Conference on Control and Automation.

[18]  Samia Nefti-Meziani,et al.  Valuable experimental model of contraction pneumatic muscle actuator , 2016, 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR).

[19]  Kiminao Kogiso,et al.  Hybrid nonlinear model of McKibben pneumatic artificial muscle systems incorporating a pressure-dependent Coulomb friction coefficient , 2015, 2015 IEEE Conference on Control Applications (CCA).

[20]  Francesco Sorge Dynamical behaviour of pneumatic artificial muscles , 2015 .

[21]  Darwin G. Caldwell,et al.  Control of pneumatic muscle actuators , 1995 .

[22]  Kiminao Kogiso,et al.  Applications of UKF and EnKF to estimation of contraction ratio of McKibben pneumatic artificial muscles , 2017, 2017 American Control Conference (ACC).

[23]  Kiminao Kogiso,et al.  Application of Particle Swarm Optimization to Parameter Estimation of a McKibben Pneumatic Artificial Muscle Model , 2016, 2016 IEEE 4th International Conference on Cyber-Physical Systems, Networks, and Applications (CPSNA).

[24]  Bong-Soo Kang,et al.  Dynamic modeling of Mckibben pneumatic artificial muscles for antagonistic actuation , 2009, 2009 IEEE International Conference on Robotics and Automation.

[25]  T. Tjahjowidodo,et al.  A New Approach to Modeling Hysteresis in a Pneumatic Artificial Muscle Using The Maxwell-Slip Model , 2011, IEEE/ASME Transactions on Mechatronics.

[26]  Zude Zhou,et al.  Modeling of pneumatic artificial muscle using a hybrid artificial neural network approach , 2015 .

[27]  Jung Kim,et al.  Powered finger exoskeleton having partially open fingerpad for flexion force assistance , 2013, 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.