End-to-End Collision Avoidance from Depth Input with Memory-based Deep Reinforcement Learning

vii

[1]  Vladlen Koltun,et al.  An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling , 2018, ArXiv.

[2]  Sergey Levine,et al.  End-to-End Training of Deep Visuomotor Policies , 2015, J. Mach. Learn. Res..

[3]  Pavel Surynek,et al.  An Optimization Variant of Multi-Robot Path Planning Is Intractable , 2010, AAAI.

[4]  Alexandre Alahi,et al.  Crowd-Robot Interaction: Crowd-Aware Robot Navigation With Attention-Based Deep Reinforcement Learning , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[5]  Andreas Krause,et al.  Unfreezing the robot: Navigation in dense, interacting crowds , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Marek Wydmuch,et al.  ViZDoom Competitions: Playing Doom From Pixels , 2018, IEEE Transactions on Games.

[7]  Helbing,et al.  Social force model for pedestrian dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  Vladimir J. Lumelsky,et al.  Incorporating range sensing in the robot navigation function , 1990, IEEE Trans. Syst. Man Cybern..

[9]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[10]  Minsu Kim,et al.  Deep Reinforcement Learning of Navigation in a Complex and Crowded Environment with a Limited Field of View , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[11]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[12]  Jonathan P. How,et al.  Socially aware motion planning with deep reinforcement learning , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[13]  Sergey Levine,et al.  Deep spatial autoencoders for visuomotor learning , 2015, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[14]  Peter Henderson,et al.  An Introduction to Deep Reinforcement Learning , 2018, Found. Trends Mach. Learn..

[15]  Eric Wiewiora,et al.  Reward Shaping , 2017, Encyclopedia of Machine Learning and Data Mining.

[16]  Tobias Glasmachers,et al.  Limits of End-to-End Learning , 2017, ACML.

[17]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[18]  Yoshua Bengio,et al.  Learning long-term dependencies with gradient descent is difficult , 1994, IEEE Trans. Neural Networks.

[19]  Wolfram Burgard,et al.  Socially Compliant Navigation Through Raw Depth Inputs with Generative Adversarial Imitation Learning , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[20]  Simon Parsons,et al.  Principles of Robot Motion: Theory, Algorithms and Implementations by Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun, 603 pp., $60.00, ISBN 0-262-033275 , 2007, The Knowledge Engineering Review.

[21]  Atil Iscen,et al.  Sim-to-Real: Learning Agile Locomotion For Quadruped Robots , 2018, Robotics: Science and Systems.

[22]  Gonzalo Ferrer,et al.  Social-aware robot navigation in urban environments , 2013, 2013 European Conference on Mobile Robots.

[23]  Marcin Andrychowicz,et al.  Sim-to-Real Transfer of Robotic Control with Dynamics Randomization , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[24]  Peter Fankhauser,et al.  ANYmal - a highly mobile and dynamic quadrupedal robot , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[25]  Marcin Andrychowicz,et al.  Asymmetric Actor Critic for Image-Based Robot Learning , 2017, Robotics: Science and Systems.

[26]  Wojciech Zaremba,et al.  Domain randomization for transferring deep neural networks from simulation to the real world , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[27]  Marco Hutter,et al.  Dynamic Locomotion Through Online Nonlinear Motion Optimization for Quadrupedal Robots , 2018, IEEE Robotics and Automation Letters.

[28]  Razvan Pascanu,et al.  Sim-to-Real Robot Learning from Pixels with Progressive Nets , 2016, CoRL.

[29]  Dieter Fox,et al.  GPU-Accelerated Robotic Simulation for Distributed Reinforcement Learning , 2018, CoRL.

[30]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[31]  Hao Zhang,et al.  Towards Optimally Decentralized Multi-Robot Collision Avoidance via Deep Reinforcement Learning , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[32]  Alec Radford,et al.  Proximal Policy Optimization Algorithms , 2017, ArXiv.

[33]  Jonathan P. How,et al.  Motion Planning Among Dynamic, Decision-Making Agents with Deep Reinforcement Learning , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[34]  Joonho Lee,et al.  Learning agile and dynamic motor skills for legged robots , 2019, Science Robotics.

[35]  Roland Siegwart,et al.  Navigation planning for legged robots in challenging terrain , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[36]  Sergey Levine,et al.  Sim-To-Real via Sim-To-Sim: Data-Efficient Robotic Grasping via Randomized-To-Canonical Adaptation Networks , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Maxim Likhachev,et al.  Combining global and local planning with guarantees on completeness , 2012, 2012 IEEE International Conference on Robotics and Automation.

[38]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[39]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[40]  Roland Siegwart,et al.  Introduction to Autonomous Mobile Robots , 2004 .

[41]  Wei Xu,et al.  Guided Feature Transformation (GFT): A Neural Language Grounding Module for Embodied Agents , 2018, CoRL.

[42]  Anders Grunnet-Jepsen,et al.  Intel RealSense Stereoscopic Depth Cameras , 2017, CVPR 2017.

[43]  Maxim Likhachev,et al.  SIPP: Safe interval path planning for dynamic environments , 2011, 2011 IEEE International Conference on Robotics and Automation.

[44]  Geoffrey E. Hinton,et al.  Using very deep autoencoders for content-based image retrieval , 2011, ESANN.

[45]  Jitendra Malik,et al.  Mid-Level Visual Representations Improve Generalization and Sample Efficiency for Learning Visuomotor Policies , 2018 .

[46]  Alex Graves,et al.  Playing Atari with Deep Reinforcement Learning , 2013, ArXiv.

[47]  Javier Civera,et al.  Unified Inverse Depth Parametrization for Monocular SLAM , 2006, Robotics: Science and Systems.

[48]  Heng-Ming Tai,et al.  Autonomous local path planning for a mobile robot using a genetic algorithm , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[49]  Jakub W. Pachocki,et al.  Learning dexterous in-hand manipulation , 2018, Int. J. Robotics Res..

[50]  Russ Tedrake,et al.  A Supervised Approach to Predicting Noise in Depth Images , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[51]  Sergey Levine,et al.  (CAD)$^2$RL: Real Single-Image Flight without a Single Real Image , 2016, Robotics: Science and Systems.

[52]  Demis Hassabis,et al.  Mastering the game of Go without human knowledge , 2017, Nature.

[53]  Jason Weston,et al.  Curriculum learning , 2009, ICML '09.

[54]  Wolfram Burgard,et al.  VR-Goggles for Robots: Real-to-Sim Domain Adaptation for Visual Control , 2018, IEEE Robotics and Automation Letters.

[55]  Dinesh Manocha,et al.  Reciprocal Velocity Obstacles for real-time multi-agent navigation , 2008, 2008 IEEE International Conference on Robotics and Automation.

[56]  Steven Lake Waslander,et al.  In Defense of Classical Image Processing: Fast Depth Completion on the CPU , 2018, 2018 15th Conference on Computer and Robot Vision (CRV).

[57]  Wojciech Jaskowski,et al.  ViZDoom: A Doom-based AI research platform for visual reinforcement learning , 2016, 2016 IEEE Conference on Computational Intelligence and Games (CIG).