Guidelines in nonholonomic motion planning for mobile robots

[1]  Jean-Paul Laumond,et al.  Topological property for collision-free nonholonomic motion planning: the case of sinusoidal inputs for chained form systems , 1998, IEEE Trans. Robotics Autom..

[2]  Mark H. Overmars,et al.  Multilevel Path Planning for Nonholonomic Robots Using Semiholonomic Subsystems , 1998, Int. J. Robotics Res..

[3]  Lydia E. Kavraki,et al.  A Random Sampling Scheme for Path Planning , 1997, Int. J. Robotics Res..

[4]  Florent Lamiraux,et al.  Flatness and small-time controllability of multibody mobile robots: Application to motion planning , 1997, 1997 European Control Conference (ECC).

[5]  Florent Lamiraux,et al.  From Paths to Trajectories for Multi-body Mobile Robots , 1997, ISER.

[6]  Jean-Paul Laumond,et al.  Dynamic path modification for car-like nonholonomic mobile robots , 1997, Proceedings of International Conference on Robotics and Automation.

[7]  Florent Lamiraux,et al.  Motion planning and control for Hilare pulling a trailer: experimental issues , 1997, Proceedings of International Conference on Robotics and Automation.

[8]  Jean-Paul Laumond,et al.  Algorithms for Robotic Motion and Manipulation , 1997 .

[9]  P. Souéres,et al.  Shortest paths synthesis for a car-like robot , 1996, IEEE Trans. Autom. Control..

[10]  Jean-Daniel Boissonnat,et al.  A polynomial-time algorithm for computing a shortest path of bounded curvature amidst moderate obstacles (extended abstract) , 1996, SCG '96.

[11]  Jean-Paul Laumond,et al.  Topological property of trajectories computed from sinusoidal inputs for nonholonomic chained form systems , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[12]  Pierre Ferbach,et al.  A method of progressive constraints for nonholonomic motion planning , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[13]  Jean-Jacques Risler A Bound for the Degree of Nonholonomy in the Plane , 1996, Theor. Comput. Sci..

[14]  Jean-Jacques Risler,et al.  Nonholonomic Systems: Controllability and Complexity , 1996, Theor. Comput. Sci..

[15]  S. Sekhavat Planification de mouvements sans collisions pour systèmes non holonomes , 1996 .

[16]  J. Laumond,et al.  Multi-Level Path Planning for Nonholonomic Robots using Semi-Holonomic Subsystems , 1996 .

[17]  Hongyan Wang,et al.  Non-Uniform Discretization Approximations for Kinodynamic Motion Planning and its Applications , 1996 .

[18]  F. Jean The car with N Trailers : characterization of the singular configurations , 1996 .

[19]  Roger E. Khayat,et al.  Finite-dimensional description of non-newtonian vortex flows , 1996 .

[20]  S. Shankar Sastry,et al.  Steering Three-Input Nonholonomic Systems: The Fire Truck Example , 1995, Int. J. Robotics Res..

[21]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[22]  Pankaj K. Agarwal,et al.  Motion planning for a steering-constrained robot through moderate obstacles , 1995, STOC '95.

[23]  Mark H. Overmars,et al.  Coordinated motion planning for multiple car-like robots using probabilistic roadmaps , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[24]  Richard M. Murray,et al.  A motion planner for nonholonomic mobile robots , 1994, IEEE Trans. Robotics Autom..

[25]  Juan Manuel Ahuactzin-Larios Le fil d'ariane : une méthode de planification générale. Application à la planification automatique de trajectoires , 1994 .

[26]  J. Risler,et al.  The maximum of the degree of nonholonomy for the car with n trailers , 1994 .

[27]  S. Sekhavat,et al.  Collision-free motion planning for a nonholonomic mobile robot with trailers , 1994 .

[28]  Richard M. Murray,et al.  Nilpotent bases for a class of nonintegrable distributions with applications to trajectory generation for nonholonomic systems , 1994, Math. Control. Signals Syst..

[29]  S. Yau,et al.  Lectures on Differential Geometry , 1994 .

[30]  Juan-Manuel Ahuactzin Larios Le fil d'ariane : une méthode de planification générale. Application à la planification automatique de trajectoires , 1994 .

[31]  P. Souéres,et al.  The Shortest path synthesis for non-holonomic robots moving forwards , 1994 .

[32]  Pierre Rouchon Necessary Condition and Genericity of Dynamic Feedback Linearization , 1994 .

[33]  Monique Chyba,et al.  Canonical nilpotent approximation of control systems: application to nonholonomic motion planning , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[34]  Jean-Paul Laumond,et al.  Metric induced by the shortest paths for a car-like mobile robot , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[35]  El-Ghazali Talbi,et al.  The "Ariadne's clew" algorithm: global planning with local methods , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[36]  Thierry Fraichard,et al.  Dynamic trajectory planning with dynamic constraints: A 'state-time space' approach , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[37]  Ole Jakob Sørdalen,et al.  Conversion of the kinematics of a car with n trailers into a chained form , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[38]  G. Campion,et al.  Structural properties and classification of kinematic and dynamic models of wheeled mobile robots , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[39]  Jean-Paul Laumond,et al.  Primitives for smoothing mobile robot trajectories , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[40]  S. Sastry,et al.  Trajectory generation for the N-trailer problem using Goursat normal form , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[41]  Jean-Paul Laumond,et al.  Singularities and Topological Aspects in Nonholonomic Motion Planning , 1993 .

[42]  Gerardo Lafferriere,et al.  A Differential Geometric Approach to Motion Planning , 1993 .

[43]  D. Normand-Cyrot,et al.  An introduction to motion planning under multirate digital control , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[44]  J. Canny,et al.  Nonholonomic Motion Planning , 1992 .

[45]  Marc Renaud,et al.  Time-optimal motions of robot manipulators including dynamics , 1992 .

[46]  J. Laumond,et al.  NILPOTENT INFINITESIMAL APPROXIMATIONS TO A CONTROL LIE ALGEBRA , 1992 .

[47]  S. Shankar Sastry,et al.  Steering car-like systems with trailers using sinusoids , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[48]  John F. Canny,et al.  Using skeletons for nonholonomic path planning among obstacles , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[49]  Philippe Martin,et al.  Flatness and motion planning : the car with n trailers. , 1992 .

[50]  H. Sussmann,et al.  Limits of highly oscillatory controls and the approximation of general paths by admissible trajectories , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[51]  Jean-Claude Latombe,et al.  Robot Motion Planning: A Distributed Representation Approach , 1991, Int. J. Robotics Res..

[52]  Jean-Claude Latombe A Fast Path Planner for a Car-Like Indoor Mobile Robot , 1991, AAAI.

[53]  Jean-Paul Laumond,et al.  Controllability of a multibody mobile robot , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[54]  Zexiang Li,et al.  A variational approach to optimal nonholonomic motion planning , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[55]  Jean-Claude Latombe,et al.  Nonholonomic multibody mobile robots: Controllability and motion planning in the presence of obstacles , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[56]  Richard M. Murray,et al.  Robotic control and nonholonomic motion planning , 1991 .

[57]  S. Sastry,et al.  Steering nonholonomic systems using sinusoids , 1990, 29th IEEE Conference on Decision and Control.

[58]  L. Shepp,et al.  OPTIMAL PATHS FOR A CAR THAT GOES BOTH FORWARDS AND BACKWARDS , 1990 .

[59]  John F. Canny,et al.  An exact algorithm for kinodynamic planning in the plane , 1990, SCG '90.

[60]  J. Latombe,et al.  On nonholonomic mobile robots and optimal maneuvering , 1989, Proceedings. IEEE International Symposium on Intelligent Control 1989.

[61]  John F. Canny,et al.  Planning smooth paths for mobile robots , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[62]  Gordon T. Wilfong,et al.  Planning constrained motion , 1988, STOC '88.

[63]  Bruce Randall Donald,et al.  On the complexity of kinodynamic planning , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[64]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[65]  Eduardo Sontag Controllability is harder to decide than accessibility , 1988 .

[66]  Jean-Jacques E. Slotine,et al.  Improving the Efficiency of Time-Optimal Path-Following Algorithms , 1988, 1988 American Control Conference.

[67]  A. Vershik,et al.  Nonholonomic problems and the theory of distributions , 1988 .

[68]  Pierre Tournassoud,et al.  Motion planning for a mobile robot with a kinematic constraint , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[69]  Gordon T. Wilfong Motion planning for an autonomous vehicle , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[70]  Jean-Daniel Boissonnat,et al.  A practical exact motion planning algorithm for polygonal objects amidst polygonal obstacles , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[71]  Jean-Paul Laumond,et al.  Finding Collision-Free Smooth Trajectories for a Non-Holonomic Mobile Robot , 1987, IJCAI.

[72]  R. Strichartz The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations , 1987 .

[73]  Jean-Paul Laumond,et al.  Feasible Trajectories for Mobile Robots with Kinematic and Environment Constraints , 1986, IAS.

[74]  J. Mitchell On Carnot-Carathéodory metrics , 1985 .

[75]  H. Hermes,et al.  Nilpotent bases for distributions and control systems , 1984 .

[76]  R. J. Schilling,et al.  Decoupling of a Two-Axis Robotic Manipulator Using Nonlinear State Feedback: A Case Study , 1984 .

[77]  Yutaka Kanayama,et al.  Trajectory generation for mobile robots , 1984 .

[78]  J. Schwartz,et al.  On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .

[79]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[80]  R. Brockett Control Theory and Singular Riemannian Geometry , 1982 .

[81]  Georges Giralt,et al.  A Multi-level Planning and Navigation System for a Mobile Robot: A First Approach to HILARE , 1979, IJCAI.

[82]  G. Viennot Algèbres de Lie Libres et Monoïdes Libres , 1978 .

[83]  Alan M. Thompson The Navigation System of the JPL Robot , 1977, IJCAI.

[84]  V. Varadarajan Lie groups, Lie algebras, and their representations , 1974 .

[85]  Nils J. Nilsson,et al.  A mobius automation: an application of artificial intelligence techniques , 1969, IJCAI 1969.

[86]  Nils J. Nilsson,et al.  A Mobile Automaton: An Application of Artificial Intelligence Techniques , 1969, IJCAI.

[87]  L. Dubins On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents , 1957 .

[88]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[89]  E. J.,et al.  ON THE COMPLEXITY OF MOTION PLANNING FOR MULTIPLE INDEPENDENT OBJECTS ; PSPACE HARDNESS OF THE " WAREHOUSEMAN ' S PROBLEM " . * * ) , 2022 .

[90]  Frédéric Jean,et al.  Sub-Riemannian Geometry , 2022 .

[91]  S. Bhat Controllability of Nonlinear Systems , 2022 .