The unsolved mystery of vision

[1]  P. Lennie,et al.  A New Code for Contrast in the Primate Visual Pathway , 2007, The Journal of Neuroscience.

[2]  W. R. Taylor,et al.  Local Edge Detectors: A Substrate for Fine Spatial Vision at Low Temporal Frequencies in Rabbit Retina , 2006, The Journal of Neuroscience.

[3]  M. Srinivasan Honeybee Vision: In Good Shape for Shape Recognition , 2006, Current Biology.

[4]  J. Victor Analyzing receptive fields, classification images and functional images: challenges with opportunities for synergy , 2005, Nature Neuroscience.

[5]  Nicole C. Rust,et al.  Do We Know What the Early Visual System Does? , 2005, The Journal of Neuroscience.

[6]  Richard H Masland,et al.  The spatial filtering properties of local edge detectors and brisk–sustained retinal ganglion cells , 2005, The European journal of neuroscience.

[7]  Peter Lennie,et al.  Coding of color and form in the geniculostriate visual pathway (invited review). , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  J. Kong,et al.  Diversity of ganglion cells in the mouse retina: Unsupervised morphological classification and its limits , 2005, The Journal of comparative neurology.

[9]  Noam Chomsky Universals of Human Nature , 2005, Psychotherapy and Psychosomatics.

[10]  David J. Field,et al.  How Close Are We to Understanding V1? , 2005, Neural Computation.

[11]  J. Pokorny,et al.  Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN , 2005, Nature.

[12]  J. Nathans,et al.  Quantitative analysis of neuronal morphologies in the mouse retina visualized by using a genetically directed reporter , 2004, The Journal of comparative neurology.

[13]  Heinz Wässle,et al.  Parallel processing in the mammalian retina , 2004, Nature Reviews Neuroscience.

[14]  Lawrence C. Sincich,et al.  Bypassing V1: a direct geniculate input to area MT , 2004, Nature Neuroscience.

[15]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[16]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[17]  Mandyam V. Srinivasan,et al.  ‘Vector white noise’: a technique for mapping the motion receptive fields of direction-selective visual neurons , 2004, Biological Cybernetics.

[18]  Paul D. Gamlin,et al.  Fireworks in the Primate Retina In Vitro Photodynamics Reveals Diverse LGN-Projecting Ganglion Cell Types , 2003, Neuron.

[19]  Noam Chomsky,et al.  The faculty of language: what is it, who has it, and how did it evolve? , 2002, Science.

[20]  Pawan Sinha,et al.  Recognizing complex patterns , 2002, Nature Neuroscience.

[21]  J. Troy,et al.  The receptive fields of cat retinal ganglion cells in physiological and pathological states: where we are after half a century of research , 2002, Progress in Retinal and Eye Research.

[22]  Richard H. Masland,et al.  The Diversity of Ganglion Cells in a Mammalian Retina , 2002, The Journal of Neuroscience.

[23]  Robert Shapley,et al.  Receptive field structure of neurons in monkey primary visual cortex revealed by stimulation with natural image sequences. , 2002, Journal of vision.

[24]  C. Gilbert,et al.  The Neural Basis of Perceptual Learning , 2001, Neuron.

[25]  R. Masland Neuronal diversity in the retina , 2001, Current Opinion in Neurobiology.

[26]  R. Shepard Perceptual-cognitive universals as reflections of the world. , 2001, The Behavioral and brain sciences.

[27]  Eero P. Simoncelli,et al.  Natural signal statistics and sensory gain control , 2001, Nature Neuroscience.

[28]  S. Solomon,et al.  Spatial properties of koniocellular cells in the lateral geniculate nucleus of the marmoset Callithrix jacchus , 2001, The Journal of physiology.

[29]  F. Werblin,et al.  Vertical interactions across ten parallel, stacked representations in the mammalian retina , 2001, Nature.

[30]  D. Ferster,et al.  Membrane Potential and Conductance Changes Underlying Length Tuning of Cells in Cat Primary Visual Cortex , 2001, The Journal of Neuroscience.

[31]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[32]  Tomaso Poggio,et al.  Models of object recognition , 2000, Nature Neuroscience.

[33]  A Horridge Seven experiments on pattern vision of the honeybee, with a model , 2000, Vision Research.

[34]  R. Reid,et al.  Low Response Variability in Simultaneously Recorded Retinal, Thalamic, and Cortical Neurons , 2000, Neuron.

[35]  R. Reid,et al.  The koniocellular pathway in primate vision. , 2000, Annual review of neuroscience.

[36]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[37]  Michael J. Berry,et al.  The Neural Code of the Retina , 1999, Neuron.

[38]  D. Baylor,et al.  Mosaic arrangement of ganglion cell receptive fields in rabbit retina. , 1997, Journal of neurophysiology.

[39]  H B Barlow,et al.  The knowledge used in vision and where it comes from. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[40]  M. C. Angulo,et al.  Molecular and Physiological Diversity of Cortical Nonpyramidal Cells , 1997, The Journal of Neuroscience.

[41]  Victor A. F. Lamme,et al.  Contextual Modulation in Primary Visual Cortex , 1996, The Journal of Neuroscience.

[42]  V. Casagrande A third parallel visual pathway to primate area V1 , 1994, Trends in Neurosciences.

[43]  J. Lund,et al.  Local circuit neurons of macaque monkey striate cortex: III. Neurons of laminae 4B, 4A, and 3B , 1997, The Journal of comparative neurology.

[44]  C. Enroth-Cugell,et al.  Responses to sinusoidal gratings of two types of very nonlinear retinal ganglion cells of cat , 1989, Visual Neuroscience.

[45]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[46]  M. Yukie,et al.  Direct projection from the dorsal lateral geniculate nucleus to the prestriate cortex in macaque monkeys , 1981, The Journal of comparative neurology.

[47]  Chomsky without language , 1981, Cognition.

[48]  F. M. D. Monasterio Properties of ganglion cells with atypical receptive-field organization in retina of macaques. , 1978 .

[49]  F M de Monasterio,et al.  Properties of ganglion cells with atypical receptive-field organization in retina of macaques. , 1978, Journal of neurophysiology.

[50]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[51]  W. Levick,et al.  Lateral geniculate relay of slowly conducting retinal afferents to cat visual cortex. , 1976, The Journal of physiology.

[52]  J. Stone,et al.  Very slow-conducting ganglion cells in the cat's retina: a major, new functional type? , 1972, Brain research.

[53]  C. W. Oyster,et al.  Rabbit Lateral Geniculate Nucleus: Sharpener of Directional Information , 1969, Science.

[54]  R W Rodieck,et al.  Receptive Fields in the Cat Retina: A New Type , 1967, Science.

[55]  E. Marg THE ACCESSORY OPTIC SYSTEM * , 1964 .