ROSPlan: Planning in the Robot Operating System

The Robot Operating System (ROS) is a set of software libraries and tools used to build robotic systems. ROS is known for a distributed and modular design. Given a model of the environment, task planning is concerned with the assembly of actions into a structure that is predicted to achieve goals. This can be done in a way that minimises costs, such as time or energy. Task planning is vital in directing the actions of a robotic agent in domains where a causal chain could lock the agent into a dead-end state. Moreover, planning can be used in less constrained domains to provide more intelligent behaviour. This paper describes the ROSPLAN framework, an architecture for embedding task planning into ROS systems. We provide a description of the architecture and a case study in autonomous robotics. Our case study involves autonomous underwater vehicles in scenarios that demonstrate the flexibility and robustness of our approach.

[1]  Daniele Magazzeni,et al.  A universal planning system for hybrid domains , 2011, Applied Intelligence.

[2]  Jake K. Aggarwal,et al.  Object tracking in an outdoor environment using fusion of features and cameras , 2006, Image Vis. Comput..

[3]  Jun Nakanishi,et al.  Trajectory formation for imitation with nonlinear dynamical systems , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[4]  Maria Fox,et al.  VAL: automatic plan validation, continuous effects and mixed initiative planning using PDDL , 2004, 16th IEEE International Conference on Tools with Artificial Intelligence.

[5]  Moritz Tenorth,et al.  KNOWROB — knowledge processing for autonomous personal robots , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Stefan Schaal,et al.  Robot Programming by Demonstration , 2009, Springer Handbook of Robotics.

[7]  Maria Fox,et al.  AUV mission control via temporal planning , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[8]  Reid G. Simmons,et al.  Robotic Systems Architectures and Programming , 2008, Springer Handbook of Robotics.

[9]  Nicola Muscettola,et al.  IDEA: Planning at the Core of Autonomous Reactive Agents , 2002 .

[10]  Michael Beetz,et al.  Improving Robot Plans During Their Execution , 1994, AIPS.

[11]  Gabriel Oliver,et al.  Reconfigurable AUV for intervention missions: a case study on underwater object recovery , 2012, Intell. Serv. Robotics.

[12]  Andrew Coles,et al.  Forward-Chaining Partial-Order Planning , 2010, ICAPS.

[13]  Maria Fox,et al.  PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains , 2003, J. Artif. Intell. Res..

[14]  Stefan Schaal,et al.  Biologically-inspired dynamical systems for movement generation: Automatic real-time goal adaptation and obstacle avoidance , 2009, 2009 IEEE International Conference on Robotics and Automation.

[15]  P. Ridao,et al.  COLA2: A Control Architecture for AUVs , 2012, IEEE Journal of Oceanic Engineering.

[16]  Leigh McCue,et al.  Handbook of Marine Craft Hydrodynamics and Motion Control [Bookshelf] , 2016, IEEE Control Systems.

[17]  Maria Fox,et al.  Planning the Behaviour of Low-Cost Quadcopters for Surveillance Missions , 2014, ICAPS.

[18]  Christopher G. Atkeson,et al.  Model-Based Control of a Robot Manipulator , 1988 .

[19]  Maria Fox,et al.  Combining a Temporal Planner with an External Solver for the Power Balancing Problem in an Electricity Network , 2013, ICAPS.

[20]  Dong-Soo Kwon,et al.  Control of underwater manipulators mounted on an ROV using base force information , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[21]  Paolo Traverso,et al.  Automated Planning: Theory & Practice , 2004 .

[22]  Moritz Tenorth,et al.  Knowledge-based Specification of Robot Motions , 2014, ECAI.

[23]  Shuxiang Guo,et al.  Development of a Vectored Water-Jet-Based Spherical Underwater Vehicle , 2011 .

[24]  Robert Mattmüller,et al.  Using the Context-enhanced Additive Heuristic for Temporal and Numeric Planning , 2009, ICAPS.

[25]  Yasuharu Koike,et al.  PII: S0893-6080(96)00043-3 , 1997 .

[26]  Jeremy Frank,et al.  Constraint-Based Attribute and Interval Planning , 2003, Constraints.

[27]  Darwin G. Caldwell,et al.  Imitation Learning of Positional and Force Skills Demonstrated via Kinesthetic Teaching and Haptic Input , 2011, Adv. Robotics.

[28]  Maria Fox,et al.  Policy learning for autonomous feature tracking , 2014, Auton. Robots.

[29]  Ivan Serina,et al.  LPG: A Planner Based on Local Search for Planning Graphs with Action Costs , 2002, AIPS.

[30]  Alin Albu-Schäffer,et al.  Aus der Forschung zum Industrieprodukt: Die Entwicklung des KUKA Leichtbauroboters , 2010, Autom..

[31]  B. Nebel,et al.  Lazy Evaluation and Subsumption Caching for Search-Based Integrated Task and Motion Planning , 2013 .

[32]  Charles Lesire,et al.  A Robotic Execution Framework for Online Probabilistic (Re)Planning , 2014, ICAPS.

[33]  Frederic Py,et al.  A deliberative architecture for AUV control , 2008, 2008 IEEE International Conference on Robotics and Automation.

[34]  Maria Fox,et al.  Plan-based Policies for Efficient Multiple Battery Load Management , 2012, J. Artif. Intell. Res..

[35]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[36]  Monique Chyba,et al.  Autonomous underwater vehicles , 2009 .

[37]  Pieter Abbeel,et al.  Combined task and motion planning through an extensible planner-independent interface layer , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[38]  S. Edelkamp,et al.  The Deterministic Part of IPC-4: An Overview , 2005, J. Artif. Intell. Res..

[39]  Félix Ingrand,et al.  Interleaving Temporal Planning and Execution in Robotics Domains , 2004, AAAI.

[40]  Greg Welch,et al.  An Introduction to Kalman Filter , 1995, SIGGRAPH 2001.

[41]  Moritz Tenorth,et al.  KNOWROB-MAP - knowledge-linked semantic object maps , 2010, 2010 10th IEEE-RAS International Conference on Humanoid Robots.

[42]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[43]  Christopher W. Geib,et al.  Object Action Complexes as an Interface for Planning and Robot Control , 2006 .

[44]  Marc Carreras,et al.  An Intervention-AUV learns how to perform an underwater valve turning , 2014, OCEANS 2014 - TAIPEI.

[45]  Jnaneshwar Das,et al.  Exploring Space-Time Tradeoffs in Autonomous Sampling for Marine Robotics , 2012, ISER.

[46]  Marc Carreras,et al.  Girona 500 AUV: From Survey to Intervention , 2012, IEEE/ASME Transactions on Mechatronics.

[47]  Stefan Schaal,et al.  Dynamics systems vs. optimal control--a unifying view. , 2007, Progress in brain research.

[48]  Alois Knoll,et al.  KVP: A knowledge of volumes approach to robot task planning , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[49]  R.G. Simmons,et al.  Concurrent planning and execution for autonomous robots , 1992, IEEE Control Systems.

[50]  Paolo Traverso,et al.  Automated planning - theory and practice , 2004 .

[51]  Rachid Alami,et al.  PRS: a high level supervision and control language for autonomous mobile robots , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[52]  R. James Firby,et al.  An Investigation into Reactive Planning in Complex Domains , 1987, AAAI.

[53]  Frederic Py,et al.  A systematic agent framework for situated autonomous systems , 2010, AAMAS.

[54]  S. Negahdaripour,et al.  Underwater mosaic creation using video sequences from different altitudes , 2005, Proceedings of OCEANS 2005 MTS/IEEE.

[55]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.